ORACLE

NetSuite OpenAir

User Scripting

2024.2

October 9, 2024

Copyright © 2013, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), i) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIXis a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

If this document is in public or private pre-General Availability status:

This documentation is in pre-General Availability status and is intended for demonstration and preliminary
use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of
this documentation.

If this document is in private pre-General Availability status:

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your pre-General
Availability trial agreement only. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, timing, and pricing
of any features or functionality described in this document may change and remains at the sole discretion
of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms
and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has

been executed by you and Oracle and with which you agree to comply. This document and information
contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trsif you are hearing impaired.

Sample Code

Oracle may provide sample code in SuiteAnswers, the Help Center, User Guides, or elsewhere through
help links. All such sample code is provided "as is” and “as available”, for use only with an authorized
NetSuite Service account, and is made available as a SuiteCloud Technology subject to the SuiteCloud
Terms of Service at www.netsuite.com/tos, where the term “Service” shall mean the OpenAir Service.

Oracle may modify or remove sample code at any time without notice.
No Excessive Use of the Service

As the Service is a multi-tenant service offering on shared databases, Customer may not use the Service
in excess of limits or thresholds that Oracle considers commercially reasonable for the Service. If Oracle
reasonably concludes that a Customer’s use is excessive and/or will cause immediate or ongoing
performance issues for one or more of Oracle’s other customers, Oracle may slow down or throttle
Customer’s excess use until such time that Customer’s use stays within reasonable limits. If Customer’s
particular usage pattern requires a higher limit or threshold, then the Customer should procure a
subscription to the Service that accommodates a higher limit and/or threshold that more effectively aligns
with the Customer’s actual usage pattern.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.netsuite.com/tos

Table of Contents

INErOAUCTION .t e e 1
USEr SCrIPLING OVEIVIEW ..ot 1
GELEING STAMTEA ..ot 4
00 P 6
RO DO I NG ettt e e 11
Platform Role PerMISSIONSt e 12
Scripting and OpenAIr MODIle ... 14
Scripting and NetSuite INTEGratioNoiii e 15

USBI SCIIPEING ettt e 16
el T lu T Te B = o U< P 16

SCrPTING WOIKFIOW .ot e 20
Creating FOMM S DES ettt 21
TESTING FOMMN SCIIPES ettt 23
Deploying FOIM SCrIPLS ... en it 24
Creating SChedUled SCIIPLS ... 25
Testing Scheduled SCrIPLS e 26
Deploying SCheduled SCriPLS e 28
Scheduled Scripts and Scheduled QUEUE STATUS ...t 29
Creating Library SCIIDTS ..t 29
CreatiNg ParamO OIS ot 31
Creating SOIUTIONS ... 33
ACCESSING TEIMINOIOGY ...ttt 36
SCIPLING STUAIO ottt 37
Scripting Studio TOoIS and SETHNGS ...oen i 38
SOAP EXPIOTEE .o 39
FUNCHIONS EXPIOTEI vttt 40
O DAt EX P O T e 40
ST DT P Al A IS e e 41
TOIMINOIOGY ..t e e 42
F O SN MIA e 42
Testing and DeDUGGINGviinii e 45
B0 e 46
SCripting STUAIO OPTIONS ... 48
ENTranCe FUNCHION Lot e 49
B S 50
SCIIPTING GOVEIMANCE .ttt e e e 52
SO A AP 54
MaKING SOAP CallS ..t 55
USING SOAP RESUITS ..t 59
Handling SOAP EFTOIS ..o e 61
OUDOUNT CalliNg e 62
R U e 63
R SO S e 63
0 0 P 63
PasSWOrd SCriPL PArameLtarsSo 64
SCHAPLING APPIOVAIS ..t 64
Working with the Approvals SYSTEM ... e 65
USING APProval RESUILS ... 67
Handling APProval ErTOrS ... e 67
CUSTOM FIBIAS e e e 68
Creating CUSTOM FIRIAS . oui e 68
Reading CUSTOM FIIASt 70

Updating CUSTOM FIEIAS ... 71

NSO A FUN G ONS o e e 72

NSOA.CONLEXT.GETAIIPAraMETEIS() .. oee ittt 74
NSOA.CONTEXT.GETAITEIMIS() .ttt 75
NSOA.CONLEXL.GELLANGUAGE() ... et 75
NSOA.cONteXt.getParameter(NamME) .. . e 76
NSOA.CONLEXT.GELTErMEEIMIA) ...t 77
NSOA.CONEXTISTESIMOTE() ..., 78
NSOA.context.parseTerminology(MESSATE)uueunii e 79
NSOA.coNtext.remainingTIME() e 79
NSOA.coNtext.remainiNnGUNITS() ... e 80
NSOA.form.confirmation(MeSSAE)cvueii i 81
NSOA.form.error(field, MESSAGE) ... n it e 82
NSOAFOrM.GETAIIVAIUBS() ... ovviie e 83
NSOA.form.getLabel(field) ... 84
NSOA.form.getName(field) e 85
NSOAFOrm.getNEWRECOIA() ... vetei et 86
NSOA.fOrm.getOIdRECONA() ...vnivtiit et 87
NSOA.form.getValue(field) i e 88
NSOA.form.get_value(field)o 89
NSOA.form.setValue(field, ValUe) 90
NSOA FOrmM.WarNING(MESSATE) .. vttt et 94
NSOANEPS.AEIETE(rEOUEST) ...ttt e 95
NSOANTEPS.GELINEGUESL) .ttt e 96
NSOA NEPS. PALCN(TEQUEST) .ottt 98
NSOA NEIPS. POSTITEGUEST) .ttt 99
NSOANTEPS. PULTEQUEST) .ot e e 100
NSOA.listview.data(liStVIeWId) 101
NSO A SEVIEWLIIST) et e 103
NSOA.META.AlEMT(MESSATR) . it 104
NSOA.Meta.log(SEVErity, MESSATER)ieii i 105
NSOA.MEeta.SeNAMAIl(MESSAGE) .. et 106
NSOANSCoNNector.integrat@AIINOW() e 108
NSOA.NSCoNNector.integrateRECOTA()ivuie it 109
NSOA.NSConnector.integrateWorkflowGroup(Name)c..viiiiiiiiei e 110
NSOA.record.<complexX type>([IA]) .. e 111
NSOA.report.data(reportld,optionalParameters)o 113
NSOATEPOTTIST() +ett ittt 114
NSOAWSAPI.adA(ODJECES) ... vie e 116
NSOA.WSapi.appProve(@pPrOVEREQUESE) ...ttt 17
NSOAWSAPI.AEIELE(ODJECES) ...ttt 118
NSOA.wsapi.disableFilterSet([flAg])ooiir e 118
NSOAWsapi.enableLog([flag]) . ove i 119
NSOA.wsapi.modify(attributes, ODJECTS)ii i 121
NSOAWSAPI.read(r@adREGUEST) . ..uiitii ittt 122
NSOA.WSaPI.reject(rejeCtREGUEST) e 123
NSOA.WSAPI.remMainiNGTIME() ...t e 124
NSOA.WSapi.sSUbMIt(SUDMITREQUEST)vi e 124
NSOA.Wsapi.unapprove(UNapprovVEREGUEST) 125
NSOA.WSapi.upsert(@ttributes,0hjeCES) ir e 126
NSOAWSAPIWNOGMI() +.. et 127
OB SaMIPDIES e 128
CompParing Date FleladS ..o e 128
Validating NUMENIC FIRlAS ..o 129
Requiring Minimum ValUeS ... 129

Creating Error LOG ENTIIES ..o 129

SENAING EMAI e 130

SOAP API — Prevent closing a project with an Open isSUecooiviiiiiiiiiiiiiiee e 130
SOAP APT — Append NOteS T0 @ PrOJECE «.uuiuuii it 131
SOAP API — Require task aSSIgNMENT ...t 131
Submitting a Timesheet for APProval ..ot 132
Outbound Calling — SOAP Call Using HTTPS POST ..ot 133
Outbound Calling — Post @ SIack MESSAGEuiiiiii e 133
Outbound Calling — HTTPS GET with AUTNOMIZatioNc.oiviiii e 134
JAV A S I 136
JAVASCIIPT OVEIVIEW .. 136
VaMIEDIES o 136
VaMIAD e SCOPE it 137
DYNAMIC DAta Ty DS ettt 138
)7 139
ASSOCIAEIVE AT Y ettt et 140
OOt et 141
FUNCHIONS o 142
0005 143
O e e 144
O I e e 144
FOTEACN 144
O Wl 145
WL 145
ConditionNal SEATEMENTS ...ciiuii e 145
e LS 146
SO L 147
ErrOr HandliNg .o 147
RETEIENCES ..o e 148
JAVASCIIPT ODJECES it 148
JAVASCIIPT OPBIATOTS o 155
RESEIVEA WOTAS ...t 157
B S CaPE SBOUENCES .o 158
SCMPTING BeST PraCliCeS .ot 159
REAI WOIIA USE CASESviiiiii e 162
ValIdATION e 164
Ensure value of multiple commissions fields equals 100%cccovviiiiiiiiiiiiie 164
Require notes field to be populated on time entries when more than 8 hoursinaday 166
When submitting an expense report, validate each ticket has an attachment (e.g. scanned
ST 168
Ensure resource time entry matches booking planning and project worked hours 170
AUTOMATION ..o e e e e e 173
Optionally create a new Customer PO when editing @ projectccooeviiiiiiiiiiinine, 173
Create time entries from task assignments when the user creates a new timesheet 177
Control budgeted hours for a project using the project budget feature and a custom hours
Tl 181
WOTKEIOW .o e 183
Prevent a booking from being created if the selected resource has approved time off during the
POOKING PEIIOA ... e 183
Prevent closing a project that Nas OPEN ISSUES ...t 186
Automatically create a new issue when project stage is "at risk" and prevent project stage from
changing until this issUe is reSOIVed 188
Send an alert email when a scheduled script completescoooviiiiiiiii 191
Send a Slack notification when issues are created or (re)assignedcooveiveiiiiniiineninns. 192

User Scripting Release HiStOIY i 206

Introduction | 1

Introduction

User Scripting Overview

User scripting is one component of the OpenAir platform, allowing you to customize OpenAir to better
meet the unique needs of your business. OpenAir supports Form Scripts, Scheduled Scripts, Library
Scripts, and Script Parameters.

User scripts are written in the industry standard JavaScript language. OpenAir is compliant with
ECMAScript 5.

To ensure the security and stability of OpenAir, constraints and checks are placed on user scripting, see
Scripting Governance. User scripting is prevented from accessing DOM methods, the file system, and
sockets. Access to OpenAir is made available through NSOA Functions.

Scripts are stored in a Dedicated Scripting Workspace used exclusively for scripting and can only be
altered through the Scripting Center. Scripts can be edited from the integrated Scripting Studio or
by an external editor. To use the Scripting Center or Scripting Studio you need to be signed in as an
administrator.

Before you begin writing scripts, you should review Scripting Best Practices.

v Tip: For a quick reference, see the User Scripting Reference Card.

Scripting Switches
There are four switches used to control scripting:

Enable user scripts to be executed by forms — enables the Scripting Center with the Forms tab
and enables you to create Form Scripts. This switch also enables the Script deployment detail report
section with the Form script deployment logs report, see Reporting.

Enable scheduled script deployments — enables the Scripting Center with the Scheduled tab and
enables you to create Scheduled Scripts. This switch also enables the Script deployment detail report
section with the Scheduled script deployment logs report, see Reporting.

Enable user script support for https methods — enables you to access NSOA.https functions and
call external APIs. See Outbound Calling.

Enable user script support for Web Service API methods — enables you to access the SOAP API
(Web Services) through the NSOA.wsapi functions. SOAP APL

@ Note: Contact OpenAir Customer Support to enable these features.

There is one role used to control access to scripting reports:

There is a View the script deployment log report role permission to enable non-administrators to
view script deployment log reports, see Reporting.

Form Scripts

Form scripts are triggered to run by Events. When you create a form script it must be associated with a
specific form.

User Scripting OpenAir

https://app.openair.com/download/UserScriptingReferenceCard.pdf

User Scripting Overview | 2

Deploying a form script consists of specifying:

= Event — The event to trigger the script to run, see Events.

= Entrance function — The function defined in the script (attached to the form) you want called, see
Entrance Function.

See Creating Form Scripts.

@ Note: Form scripts are executed within the context of the user who is signed in, see
NSOA.wsapi.disableFilterSet([flag])

Important: Form scripts may be triggered by an event associated with user interaction —
when a user clicks Save, for example.

Form scripts can also be triggered by an event associated with a process utilizing the form
software logic — when importing project records from NetSuite using OpenAir NetSuite
Connector, for example, depending on the integration configuration. For more information, see
Scripting and NetSuite Integration.

Scheduled Scripts

Scheduled scripts are created in a similar same way to form scripts and follow the same scripting
workflow. The main differences are that scheduled scripts are not associated with a form, have higher
Scripting Governance limits, and are executed according to a schedule defined when they are deployed.

Scripts are executed one at a time from a single first in first out (FIFO) queue.

[Script | Schedule ______ Scripts with the

) = ~ same schedule time
N cevery day 10am 00

1st of the month at 10am 00 v
Add to queue when
time to execute
After execution the
script can enterthe
queue again.
' Single FIFO Queue

The Scripting Center > Scheduled > Run script deployment / Run test code
places the script immediately in the queue.

arenotrunina
predictable order.

See Creating Scheduled Scripts.

User Scripting OpenAir

User Scripting Overview

3

v Tip: Two or more scripts with the same schedules times that need to run in a specific order
should be merged into a single script, that is merge into one script with one Entrance Function
calling each of the three functions in the desired order.

@ Note: Scheduled scripts are executed within the context of a user. You need to specify the user
under which the script is to be executed when you deploy the script.

v Tip: By default scheduled triggers are disabled on sandboxes. If you need to test scheduled
triggers in your sandbox account, create a support case in SuiteAnswers and request the
run_schedule_script trigger to be enabled for your sandbox account.

Library Scripts
Library scripts are created in a similar same way to form and scheduled scripts and follow the same

scripting workflow.

Library scripts allow you to package the complexity of a scripted solution into calling scripts and
supporting functions resulting in scripts that are easier to build and maintain. You can build libraries
of proven functions to reduce the cost of development and maintenance. Libraries are seamlessly
integrated into the Scripting Studio to boost developer productivity.

See Creating Library Scripts.

Script Parameters

Script parameters allow developers to create scripts that can be configured without needing to change
the script. Parameters are created and set in the same way as custom fields.

See Creating Parameters.

Script Terminology

Administrators can customize the terminology used in OpenAir to meet the unique needs of

their company. For example, one company may use the word project to describe work to be
accomplished. Another company may call it a case, job, or assignment. See Interface: Terminology
in Administrator Guide Chapter 6 "Administration - Global Settings" for more information about
customizing terminology in OpenAir.

The terminology set for an account can be directly accessed and used in scripts to create results that
meet the unique needs of the company.

Scripts can be written to immediately reflect any terminology changes made by an administrator without
the need to adjust the scripts in any way.

See Accessing Terminology.

Platform Solutions

You can create scripts and store them with all their dependent libraries and parameters in a single
solution (XML) file. You can then apply the solution directly to another account. Solutions are stored in
XML files to facilitate reading, transfering, archiving, and comparing them.

User Scripting OpenAir

https://app.openair.com/download/AdministratorGuide.pdf

User Scripting Overview

4

v Tip: All of the examples described in Real World Use Cases are provided as solutions, see
Creating Solutions.

Business Intelligence Connector

The Business Intelligence Connector feature lets you publish OpenAir reports and list views to the
OpenAir OData service. Reports can be published with different scope of use. All published reports are
accessible with user scripting. You can publish reports for use with user scripting exclusively.

You can access the reports and lists published using the Business Intelligence Connector feature with the
following functions:

For reports: NSOA.report.data(reportld,optionalParameters) and NSOA.report.list().
For lists: NSOA . listview.data(listviewId) and NSOA . listview.list()

These functions give you access to the same information available when you use Business Intelligence
tools to access your OpenAir OData feed.

You can use published lists like custom queries and read the latest list data in your OpenAir form and
scheduled scripts.

@ Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Getting Started

With scripting enabled the Scripting Center section is available in Administration, see Scripting Switches.

@ Note: This also enables the Scripts section in Modify the form permissions forms and in
Administration > Customization.

Quick Start

1. Signin as an Administrator and go to the Scripting Center section.

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new script from the Create Button. See Creating Form Scripts and Creating Scheduled
Scripts.

You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified

file and the original file left untouched.

@ Note: An individual script can only be associated with one form. The same script cannot
be triggered by two different forms or even form events. An individual form may trigger as
many scripts as necessary.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

User Scripting OpenAir

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

Scheduled Library Parameters
All v
Script &

All vl Al

Status

Inactive

Getting Started | 5

- Entrance function = Event -

v A vl Al v LA

Test entrance

4. Type the script into the editor and then fill out the fields in the Scripting Studio Tools and Settings:

a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.

Select any libraries referenced by this script.

b
c. Select the Event to trigger the script, see Events.
d

Select the Entrance function, the name of your function to run in the editor, see Entrance

Function.

o

f. Click SAVE.

Form script deployments

[F20 M Scheduled Library Parameters Solutions

~ Seripting Studio

Ne leg messages

Use the Code revision comments to comment the script changes made.

Cancel

validate_ticket

Association
Expense report 2
Employee

Collins, Marc v | Q

Execution displays internal form script deployment log error debug detail for this

References

ALL SELECTED 11

Selectall Clearall
DateHelperjs

Project js

SOAPjs

Timesheet js

Event

Before approval v

Entrance function

check_receipt_has_attachments ¥

Code revision comments

Comments for this document revision

1 function check_receipt_has_attachments(type) {

// return if not an approve_request
if (type 1= 'approve_request')
return;

// Load receipt data

var envelope = NSOA.form.getOldRecord();
var ticket = new NSOA.record.oaTicket();
ticket.envelopeid = envelope.id;

var readRequest = {
type: "Ticket",
fields: "id, attachmentid, reference number, missing receipt",
method: "equal to”,
objects: [ticket],
attributes: [{
name: "limit”,
value: "250"
11
i

var arrayOfreadResult = NSOA.wsapi.read(readRequest);

var missingAttachment = [];

if (larrayOfreadResult |
NSOA. Form.error(’ ',

farrayofreadresult[o])
"Internal error reading envelope receipts.”);

else if (arrayOfreadResult[@].errors === null & arrayOfreadResult[0].objects)
arrayOfreadResult[8].objects.forEach(
function(o) {
if (o.attachmentid === @ && o.missing_receipt != '1')
missingAttachment.push(o.reference_number);
¥
)5

if (missingAttachment.length > @) {
NSOA. form.error ("'

"The fellowing receipts (by reference number) are missing an attachment:
)

missingAttachment.join(",

"oy

state, see Scripting Workflow.

@ Note: The act of saving a script in the "Inactive” state will move the script to the "In testing”

5. The script will now run when the SAVE button is pressed on the form to which it has been

deployed.

Important: Test your scripts in a sandbox account before deploying to a production

account.

6. To deploy the script, select the Deploy option from the Status menu, see Scripting Workflow.

User Scripting

OpenAir

Getting Started

MyFirstScript js In testing -

N

In testing
Deployment
Deploy
Disable testing
Manage libraries
Manage parameters
View history

For more details see:

Scripting Center — How to build, test, and deploy your scripts.

Scripting Studio — Details on the OpenAir IDE.

NSOA Functions — Details on the functions provided to access OpenAir.
JavaScript — How to use the JavaScript language.

Code Samples — OpenAir user script examples.

Real World Use Cases — Larger examples provided to assist you in developing your own scripts.

Logs

Script logs are the primary means for Testing and Debugging a script and for monitoring the health of a
deployed script. Any errors that occur during run time are written to the script log.

Scripts can write to the log using the NSOA.meta.log(severity, message) and NSOA.meta.alert(message)
functions. Detailed SOAP API request and response messages can also be logged by calling the
NSOA.wsapi.enableLog([flag]) function from within a script.

Each log entry contains the following information:
Severity — The supplied severity: "Fatal", "Error", "Warning", "Info", "Debug", or "Trace".
Timestamp — The time the message was logged.

Generated by — For example, whether the message was generated by your script or by OpenAir.
Message — The full message text.

@ Note: OpenAir adds a log entry when one of the following script properties is changed, with
an indication of what was changed: Source code, Event, Entrance function, Deployed status,
Employee.

User — The user who triggered the script.

Internal ID — The internal ID of the log message. Sorting log entries by their Internal ID may be
useful for debugging scripts when multiple log messages are recorded in the same second and you
need to know the order the messages were recorded in.

v Tip: Ifyou load the script into an Editor you can quickly find the line number reported in the log
message, see Testing Form Scripts.

View Log

You can view any log messages a script has generated by clicking the "View Log" link from the Scripting
Center and Scripting Studio, see also Reporting.

User Scripting OpenAir

6

Logs

Al o T

Form script deployment Messages

e Untitled" Columns %

i & & i & &
Severity Internal 1D Timestamp Generated by Message e Customize list view
Al o o Al M o Download list data
Rows per page
Info 2255932 2023-02-20 03:45:55 System Script has been changed (Deployed status, User) v 10
20
Info 2255915 2023-02-03 11:52:53 System Script has been changed (User) 50
Info 2255914 2023-01-18 11:48:51 System Script has been changed (Deployed status) 100
Al
Info 2255913 2023-01-18 03:08:58 System Script has been changed (Deployed status, User, Source code) Density
Info 2255912 2023-01-18 03:02:38 System Script has been changed (User) Compact
v Comfortable
Info 2255911 2023-01-16 06:50:40 System Script has been changed (User) Resize columns
Enabled
Info 2255910 2023-01-16 06:47:51 System Script has been changed (Source code in test) Disabled
Info 2255909 2023-01-16 06:45:57 System Script has been changed (User)
Info 2255908 2023-01-16 06:45:27 System Script has been changed (Deployed status) Collins, Marc
Info 2255307 2023-01-16 06:44:00 System Script has been changed (Deployed status, User) Collins, Marc

10 rows on page

23 total rows

° 2 3 Next

The log view has the following standard OpenAir features:

1. Filter log entries
Sort log entries
Customize list

Download list data as a CSV, HTML, and PDF formatted file

o > 0D

Set the number of rows displayed on a page

@ Note: Errors generated by a library are reported into the calling form or scheduled script.
Libraries do not have separate logs.

Administrators can control the messages that are written to deployed scripts by setting the Log Severity
for the script.

You can see how many log entries are part of a log without having to open each log with the “Display the
number of logs at 'View logs' link” feature. This feature shows a count of log entries as part of the "View
Log" link for Form and Scheduled Script Deployments.

User Scripting OpenAir

7

Script deployments

Scheduled Library Parameters

All v

Script - Status —
All v All v
ProjectCF.js In testing -
TestScript.js Inactive -

Solutions

Form name

Project

Project

Project

Log

Logs

View Log (3)

No log messages

The number of logs also appears next to the "View Log" link in the Scripting Editor.

View Log (3)

1 function main(type) {

2 NSOA.form.confirmation('confirmation message');

3}

To use this feature, go to the User Menu > Personal Settings > Scripting Studio Options and select the

"Display the number of logs at 'View logs' link" option.

Log Severity

Script logs recognize the following severities: "Fatal", "Error", "Warning", "Info", "Debug", or "Trace".

severity.

@ Note: If a severity is used that the log system does not recognize then it is written as an "Info"

The NSOA.meta.log(severity, message) function takes two parameters, the first is severity and the second
is the message to log. The NSOA.meta.alert(message) function takes a message parameter and writes

"Info" severity message.

Severity is case insensitive so the following calls are all treated as the same:

1 \ NSOA.meta.log('debug', "message");
2 ‘ NSOA.meta.log('Debug', "message");
3 ‘ NSOA.meta.log('DEBUG', "message");

The following are also treated as the same:

1‘ NSOA.meta.log('myseverity',"message");
4‘ NSOA.meta.log('Info', "message");

This is the same as calling:

User Scripting

OpenAir

8

Logs | 9

‘ NSOA.meta.alert("message");

If you trigger a script that is either "In testing" (or "Active revising" and you are signed in as the test user)
then ALL log messages are logged.

If you trigger a script that is "Active" (or "Active revising" and you are not signed in as the test user) then
the log messages written are controlled by the Log severity set for the script in the Scripting Center.

Script deployments

Form Scheduled Library Parameters Solutions

All

<]

Script & Log & Log severity =

Al v] Al |

es.js View Log Info s

Fatal
Error
Warning
Info
Debug
Trace

Non-deployed scripts log all messages but deployed scripts log messages according to the Log severity
setting.

Calls to NSOA.meta.log(severity, message) with the severity parameter set to "Debug" or "Trace" do not
consume units but are limited to a maximum of 1000 per script.

The default Log severity level for deployed scripts is "Error". This means that only "Error” and "Fatal"
severities are written to log. In this case "Trace", "Debug", “Info”, and “Warning” messages are simply
ignored.

Administrators can set the Log severity level for deployed scripts.

@ Note: "Fatal" and system generated messages are ALWAYS logged! A system Info message is
written to the log when the log severity is changed.

v Tip: You can set the log severity to "Warning" or "Error" to save space and improve system
performance for scripts that are operating correctly and generating log information that you are
sure you don't need.

v Tip: You can set the log severity of a deployed script to "Debug" to track down errors that only
occur for a deployed script.

See Scripting Return Codes for more details.

Trace Level Logs

Fatal "User script timed out" log messages are followed by "Trace" log messages which break down
the time used in the script to assist you in identifying the root cause of the time out. The log messages
indicate the time taken by each function call in the script.

User Scripting OpenAir

All

Form script deployment Messages

Logs | 10

[+

Severity * Timestamp Lt Generated by * Message a
All v

Fatal 2017-03-06 05:57.06 System User script timed out (exceeded 10s, start: 2017-03-06 05:56:13, end: 2017-03-06 05:57-06) (terdf js function setCustomCenterField)
Trace 2017-03-06 05:57:06 System JS function 'NSOA meta log' started at 2017-03-06 05:56:15.34914, ended at 2017-03-06 05:56:15.35183 (dur. 0.00269s)
Trace 2017-03-06 05:57.06 System JS function "NSOA.wsapi.modify’ started at 2017-03-06 05:56:13.91, ended at 2017-03-06 05:56:15.34211 (dur. 1.43212s)
Trace 2017-03-06 05:57.06 System JS function "NSOA. wsapi. disableFilterSet’ started at 2017-03-06 05:56:13.90615, ended at 2017-03-06 05:56:13.90967 (dur. 0.00352s)
Trace 2017-03-06 05:57.06 System JS function 'NSOA.meta.log' started at 2017-03-06 05:56:13.90323, ended at 2017-03-06 05:56:13.90585 (dur. 0.00263s)
Trace 2017-03-06 05:57.06 System JS function "NSOA form.getNewRecord' started at 2017-03-06 05:56:13.58962, ended at 2017-03-06 05:56:13.61895 (dur. 0.02933s)
Trace 2017-03-06 05:57.06 System Script terdf s started at 2017-03-06 05:56:13.572168

Clear Log Entries for a Specific Script

You can clear all log entries for a specific script from the Scripting Center.

To clear log entries for a script

Go to Administration > Scripting Center.

Click the status dropdown for the script in the Status column, then click Clear log.

A confirmation dialog appears.

Click OK to clear the logs.

If there were any log messages to be cleared, the log now contains a single entry indicating that
the log was cleared manually.

1.
2.
3.
Script e
All w

LanguageTest.js

ListView.js

postSlackMessage.oajs

SOAPCalljs

S0AFTestjs

Testjs

9rows

Delete Log Entries

Status & Log a Form name &
All w Project hd
In testing v View Log (1) Project
In testing
Deployment v Log (7572) Project
Deploy
Disable testing 0g messages Project
Manage libraries
Manage parameters og messages Project
Manage custom fields
View history og messages Project
Export solution
Logging "
0g Mmessages Project

The delete log entries maintenance task is available to allow administrators to delete log entries that are
no longer needed. This can be useful to save space and create smaller backup files.

User Scripting

OpenAir

Logs | 11

No maintenance task

Regenerate all utilization tables for booked utilization reports
Regenerate pending utilization tables for booked utilization reports
Set the PO purchaser to its original value

Generate planned hours for each employee assigned to a task
Update percent complete and recalculate all active projects
Recalculate all projects and assigned utilization tables

Generate cost center associations for receipts and time entries without cost centers
Delete saved reports from inactive employees

Calculated field entity determination and validation

Rebuild registry

Recalculate import/export state support tables

)| Delete temporary pending boakings for all projects

Delete | all (~v]| seript deployment user logs clder than days with log level at or below | Debug [v] |

The delete logs task is available from Administration > Global Settings > Account > Maintenance Settings.

v Tip: Use this maintenance task when your system is not busy and ensure not to delete log
entries that you may need.

Important: You should keep at least the last 30 days of log.

Reporting
This section contains the Form script deployment logs report and the Scheduled script deployment logs
report.

To view the Form script deployment logs detail report you need the Enable user scripts to be
executed by forms switch enabled.

To view the Scheduled script deployment logs details report you need the Enable scheduled script
deployments switch enabled.

Non-administrators can see the reports if they have been assigned the View the script deployment log
report role permission.

Form script deployment logs

Form script deployment log detail report

Clearsort &

modify report re-run report

Generated by & Severity & Message & Entrance function “ Form name @ Event @ User @ Document & Workspace
System Info isDebugMode is not defined at user script line 3 (test js function test). test project_edit_form Before save Collins, Marc testjs UserScripts
System Info oaAddress is not defined at user script line 5 (test js function test) test project_edit_form Before save Coliins, Marc testjs UserScripls
System Info oaEstimatephase is not defined at user script line 6 (testjs function test). test project_edit_form Before save Collins, Marc testjs UserScripts
System Info oaPurchaser is not defined at user script line 7 (test js funciion test) test project_edit_form Before save Collins, Marc testjs UserScripts
System Info oaDate is not defined at user script line 8 (test js function test) test project_edit_form Before save Coliins, Marc testjs UserScripts

This report allows you to view all the log messages for all form script deployments. See
NSOA.meta.log(severity, message) for more details.

You can also see the SOAP request and response messages if NSOA.wsapi.enableLog([flag]) is used in a
script.

User Scripting OpenAir

Reporting | 12

To view this report, you need the Enable user scripts to be executed by forms switch enabled.

There is a View the script deployment log report role permission for non-administrators to view this
report.

Scheduled script deployment logs

Scheduled seript deployment log detail report

Clearsort 3
modify report re-run report
Generated by & Severity © Message &
System Fatal Neither document revision nor code exists for schedule script deployment78
System Fatal Cannot save this form due to error in schedule script deployment -1. Please contact account administrator with this error.

This report allows you to view all the log messages generated by all scheduled script deployments. See
NSOA.meta.log(severity, message) for more details.

To view this report, you need the Enable scheduled script deployments switches enabled.

There is a View the script deployment log report role permission for non-administrators to view this
report.

Scripting Return Codes

The following return codes may appear in scheduled script or form script deployment logs.

Return Code Description

0 OK/Success

100 Unknown error

101 Compilation error

102 Script timed out

103 Script used all units

104 Uncaught JavaScript exception
105 Uncaught Perl exception

Platform Role Permissions

As of the April 16, 2016 release, Administrators can assign Platform Roles to users to control access to
critical features of the Scripting Center and Scripting Studio. You can create Platform Roles by navigating
to Administration > Roles. You should create the following roles:

Script Administrator
Script Developer
Script QA

Script Deploy

Roles can be assigned several role permissions:

User Scripting OpenAir

Platform Role Permissions | 13

View Scripting Center — allows you to access and view the Scripting Center by navigating to
Administration > Scripting Center.

Create script — allows you to create a new script.
Change script log level — allows you to set what types of information to log.
View script in Scripting Studio — allows you to view a script in the Scripting Studio.

View and modify script in Scripting Studio — allows you to view a script and make changes to it in the
Scripting Studio.

Enable script testing — allows you to move a script to “In testing” status.

Upload script revision code — allows you to upload new code revisions after a script has been
deployed.

Disable script testing — allows you to move an “In testing” script to “Inactive” status.
Discard script changes — allows you to discard any script changes made since the last save.
Deploy new script — allows you to save a new script and move it to “Active” status.

Deploy script changes — allows you to save changes to an “In testing” script and move it to “Active”
status.

Undeploy script — allows you to move an “Active” script to “In testing” status.
Delete script — allows you to delete a script.

Set form script “Execute As Employee” — set an employee for script deployment when running a script
under another user.

Run schedule script test code — allows you to run schedule script test code in either “In testing” or
“Active: revising” states.

Run schedule script code — allows you to run currently deployed script code.

Cancel schedule script queued runs — allows you to cancel any previously-scheduled runs waiting for
processing in the queue.

View script parameters — allows you to view, create, and modify script parameters.

View and modify script parameters — allows you to view, create, and modify script parameters.
Set script parameter value — allows you to use the “Set” link for the script parameter value.
View solutions — allows you to view solutions, but not edit them.

View and modify solutions — allows you to view, create, and modify solutions.

Export solution — allows you to export a solution based on a particular script deployment.
Upload solution — allows you to upload a solution XML file.

Apply solution — allows you to create all objects specified in a solution and create a log file.
Delete solution — allows you to delete a solution, all of its history, and logs.

We suggest creating the following roles and assigning them these permissions:

View and modify script in
Scripting Studio

Permissions Script Administrator Script Developer Script QA Script Deploy
View Scripting Center]
Create script (] (]
Change script log level .a. .ﬂ. .ﬂ.
View script in Scripting Studio Q Q Q
@ @

User Scripting OpenAir

Permissions

Script Administrator

Script Developer

Platform Role Permissions

Script QA Script Deploy

14

Enable script testing

Upload script revision code
Disable script testing

Discard script changes
Deploy new script

Deploy script changes
Undeploy script

Delete script

Set form script Execute As User
Run schedule script test code
Run schedule script code

Cancel schedule script queued
runs

View script parameters

View and modify script
parameters

Set script parameter value
View solutions

Create solution

Upload solution
Download solution

Apply solution

Delete solution

o

000000 OO0 O 000000000

@

o L I I

o000 0 O O O

@

e

L

0000
L <

Scripting and OpenAir Mobile

OpenAir Mobile 4.0 or later version supports:

= All form scripts associated with the expense report and receipt entity forms.

= "Before approval" and "After approval" scripts associated with the timesheet entity form.

@ Note: “On submit,” “Before save,” or “After save” scripts associated with the timesheet entity
form are not supported.

For an example of script that is executed both in OpenAir and OpenAir Mobile, see

User Scripting

OpenAir

Scripting and NetSuite Integration | 15

Scripting and NetSuite Integration

You can use the following user scripting functions to trigger an integration run:

NSOA.NSConnector.integrateAllNow() — Use this function to import and export records in bulk from
your scheduled scripts. The run will include all integration workflows that are active at the time the run
is triggered. See NSOA.NSConnector.integrateAlINow().

NSOA .NSConnector. integrateWorkflowGroup(name) — Use this function to import and export records
in bulk from your scheduled scripts. The run will include only integration workflows in the workflow
group specified by name. See NSOA.NSConnector.integrateWorkflowGroup(name).

NSOA.NSConnector . integrateRecord() — Use this function to export a single OpenAir record from your
form scripts. See NSOA.NSConnector.integrateRecord().

If you are using the NetSuite <> OpenAir integration, and depending on the integration configuration,
NetSuite Connector may use software logic associated with the Project form when importing project
records from NetSuite to OpenAir. In this case, form scripts associated with the Project form and
triggered by an “On submit”, “Before save”, or "After save” event will run for each imported project record.
This will impact the performance of your integration runs and may result in errors related to scripting
governance limits. For more information about configuration options that result in the integration

triggering form scripts, see NetSuite Integration.

User Scripting OpenAir

https://app.openair.com/download/NetSuiteIntegration.pdf

User Scripting

User Scripting
Scripting Center

Scheduled Library Parameters Solutions

All

Script a Status a Entrance function @& Event a Log & Form name
All All All All Project
createCustomerPO js Active w createCustomerPO After save View Log Project
TestProject js In testing = View Log Project
updateProjectBudgetHours js Inactive - testBack Before save View Log Project
Validate_Project js - checkNotes Before save View Log Project

4 rows

o]

The Scripting Center is accessed from Administration > Scripting Center and gives administrators

complete control over all script deployments and development activities from a central location.
The Scripting Center has five tabs:

= Form — See Creating Form Scripts.

u Scheduled — See Creating Scheduled Scripts.

= Library — See Creating Library Scripts.

= Parameters — See Creating Parameters.
= Solutions — See Creating Solutions.

createCustomerPO s Active - createCustomerPQ After save View Log Project

From the Scripting Center you can launch the Scripting Studio by clicking on a script link.

createCustomerPO js

Deployment
Revise

Undeploy
View history
Create solution

TestProject js

Scripts are moved through the Scripting Workflow from the Status menu.

16

fully supported from the Scripting Center.

@ Note: Customers that choose not to use the Scripting Studio in favor or another editor are still

You can view any log messages the script has generated using the “View Log" link, see Logs.

User Scripting

OpenAir

Scripting Center | 17

You can clear all log entries for a specific script from the Scripting Center using the Clear log option in
the Status dropdown list. See Clear Log Entries for a Specific Script.
Script — This is the script to run on the event, click to edit the script in the Scripting Studio.
Status — Indicates the state of the script in the Scripting Workflow.
Entrance Function — This is the entrance function to call in the script, see Entrance Function.
Event — This is the event that will trigger the script to run, see Events.

Form name — This is the form that will trigger the script, see Creating Form Scripts.

Scheduled Queue Status

Form Library ~ Parameters Solutions

Script & Started & Duration [sec] & Status &

All ¥ Al v

115-03-23 04:36:44 1244 In lesung

The Started and Duration [sec] columns on the Scripting Center > Scheduled tab allows administrators
to monitor the processing of scheduled scripts in the queue. Refresh your screen to see the progress. The
Started and Duration [sec] columns are cleared when the script completes.

Dedicated Scripting Workspace

OpenAir incorporates a dedicated scripting workspace used exclusively for scripting. The dedicated
scripting workspace is hidden in OpenAir. Files in the dedicated scripting workspace can only be altered
through the Scripting Center. This feature provides additional security for the maintenance of scripts. It
is not possible to accidentally delete an active script or to create scripts with the same name. This feature
also simplifies the user interface as you do not need to specify a workspace to store the script.

Manage libraries

References

ALL SELECTED

Selectall Clear all
DateHelper.js
Project.js
SOAPjs

Timesheet s

User Scripting OpenAir

Scripting Center | 18

You can specify the libraries a script references by selecting Manage libraries from the Scripting Center
Status menu. This performs the same function as selecting libraries in the Scripting Studio Tools and
Settings and is provided for developer using an external editor.

@ Note: You can only manage the libraries of “In testing” and “Active: revising” scripts.

Important: You cannot select an "Inactive” library and you cannot deploy a script that is
referencing a library that has not been deployed.

Manage parameters

- Script parameters

ALL SELECTED

Selectall Clearall
IssueOpenStage
ProjectClosedStage
SendLater
Share

Size

Example

You can specify the parameters a script uses by selecting Manage parameters from the Scripting Center
Status menu. This performs the same function as selecting parameters in the Script Parameters section
of the Scripting Studio and is provided for developer using an external editor.

@ Note: You can only manage the parameters of "In testing” and “Active: revising” scripts.

View history

The script deployment history is available by selecting View history from the Scripting Center Status
menu. From this form you can browse through each revision of deployed code and download a selected
document revision. For each version of a deployed script (document revision), the Script deployment
history page shows:

The deployed script source code

Deployment comments

When the script was deployed and by whom. The date and time is given as Eastern Time (UTC - 5).

User Scripting OpenAir

Scripting Center | 19

Important: A new history entry is only created when you Deploy a script. A new history entry is
not created every time you SAVE your script changes.

Script deployment history

+ Document revision
LanguageTest js

Document : Revision e e CErEt e |

LanguageTestjs v |:| & v z
3 NSOA.meta.alert("Script started for langauge test");
Document download 5 // return user language code : en | fr | de | es | zh | ja | cs
Download selected document 6 var before_units = NSOA.context.remaininglnits();
7 var lang = NSOA.context.getlanguage();
Document comments Z var after_units = NSOA.context.remainingUnits();
Removed unused library references from 10 if (lang == 'cs') {
source code to prepare for production 11 // display messages in the Czech language”
release 12 var msg = NSOA.context.getParameter('CSMessage');
13 NsOA.form.error (™", "The message was: " + msg + " before units ™ + before_units + "
after units ™ + after_units);
Created 14 -
2023-01-18 03:08:58 by Collins, Marc 15
16 else
17 NsOA.form.error (™", “unexpected language: " + lang);
18|}

User Scripting OpenAir

Scripting Center

Scripting Workflow

New 1 t Delete

Inactive ~

Test
Delete
View history

Edit* [Test l t Disable testing

In testing o

Deploy Undeploy

Disable testing
View history
Create solution

Deploy l t Undeploy
Active S

Undeploy
View history
Create solution

l Deploy changes/

Discard changes

Deploy changes
Discard changes
Undeploy

View history
Create solution

20

O Note: * Edit is actioned by clicking the script link and saving from the Scripting Studio

A color coded status indicator shows the position of the script in the scripting workflow:

= Inactive scripts are not triggered at all.

= In testing scripts are only triggered by the user selected to test the code.

= Active scripts are triggered for all users.

= Active: revising scripts have separate deployed code and test code. The test code is triggered by the
user selected to test the code and the deployed code is triggered by all other users.

Depending on the scripts status in the workflow a list of options are available by clicking on the status.

Status

Actions

Inactive =

= Test — Prompts for test settings and on SAVE moves the script to In testing.

= Delete — Prompts for confirmation and on OK deletes the script code and all associated history.

User Scripting

OpenAir

Scripting Center | 21

View history — see View history.

Click the script link to make changes in the Scripting Studio. On SAVE the script moves to In

testing.
- = Deploy — Prompts for confirmation and on SAVE moves the script to Active.
Disable testing — Prompts for confirmation and on OK moves the script to In active.
Manage libraries — see Manage libraries.
Manage parameters — see Manage parameters.
View history — see View history.
Export solution — see Creating Solutions.
Click the script link to make changes in the Scripting Studio. On SAVE the status in not changed.
e - Revi;e — Prompts for a new JS file with the reguired content ano! then Ia.utwches the Scripting
Studio with this new content. On SAVE the script is moved to Active: revising.
Undeploy — Prompts for confirmation and on OK moves the script to In testing.
View history — see View history.
Create solution — see Creating Solutions.
Click the script link to make changes in the Scripting Studio. On SAVE the script moves to Active:
revising.
PR Deploy changes — Prompts for confirmation and on SAVE moves the script to Active.

Discard changes — Prompts for confirmation and on OK moves the script to Active ignoring any
changes made.

Manage libraries — see Manage libraries.

Manage parameters — see Manage parameters.

Undeploy — Prompts for confirmation and on OK moves the script to In testing.
View history — see View history.

Create solution — see Creating Solutions.

Click the script link to make changes in the Scripting Studio. On SAVE the script moves to Active:
revising.

Creating Form Scripts

Form scripts are created from the Create Button. You need to specify a unique filename for the script in
the dedicated scripting workspace. You can optionally select a document that already has the script you
need otherwise a blank script file will be created. If you specify a document to upload then a new script
file is created from the specified file and the original file left untouched.

@ Note: An individual script can only be associated with one form. The same script cannot be
triggered by two different forms or even form events. An individual form may trigger as many
scripts as necessary.

Active v createCustomerPO After save View Log Project

To create a form script:

1. Go to Administration > Scripting Center > Form. The list for form scripts appears.
2. Click the Create button.

User Scripting OpenAir

G Scripting Center

Administration ~ Allitems

New AP! Integration Application

Opportunit

complete recognition rule form Account-wide: Report
script deployment

Appro
depl

ess form script Custom fields

As billed recognition rule form Customers: Gontact
script deployment
Customers: Customer

ve

e

Booking request form scrip Customers: Gustomer location

cript deployment Customers: Email templates

deployment Customers: Prospect

t deployment

© N o g k& w

Click Save. The list for form scripts appears.

ve

ve

ve

ve

Scripting Center | 22

Form script deployments

2Lyl Scheduled Library Parameters Solutions

New document

Cancel

Association
Booking

Filename *

BookingNotification js|

Select a document to upload

Browse... | No file selected

ifno file is provided, empty script wil be created

Cancel

Click the type of form script you want to create under “New". The “New document” dialog appears.
Type a filename for the script into the “Filename” dialog.

If you want to import an already written form script, click Choose File and select the script’s file.

Click on the Script link in the Scripting Center to open the script in the Scripting Studio.
Type the script into the editor and then fill out fields in the Scripting Studio Tools and Settings:

a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.

b. Select any libraries referenced by this script.

c. Select whether the script is executed On Submit, Before save, or After save.

d. Select the Entrance function, the name of your function to run in the editor, see Entrance

Function.

e. Use the Code revision comments to comment the script changes made.

f. Click SAVE.

state, see Scripting Workflow.

@ Note: The act of saving a script in the "Inactive” state will move the script to the "In testing”

After a script is created, you can edit the script by clicking on the script link, move the script through the
Scripting Workflow, or view any log messages the script has generated using the “View Log" link, see

Testing Form Scripts.

v Tip: To reduce the errors in your scripts, see Scripting Best Practices.

Scripts need to be carefully tested before being deployed to production. See Testing Form Scripts and

Scripting Workflow for details.

For more details see:

Scripting Studio — Details on the OpenAir IDE.

NSOA Functions — Details on the functions provided to access OpenAir.

JavaScript — How to use the JavaScript language.

Code Samples — OpenAir user script examples.

Real World Use Cases — Larger examples provided to assist you in developing your own scripts.

User Scripting

OpenAir

Scripting Center | 23

Testing Form Scripts

There are three types of errors you need to remove from your scripts.

Syntax errors — These errors can be caught before your script is executed. Syntax errors are
displayed in the Editor.

For example:

1 function test()

a - ' Var value = NSOA_ form.getValue ('budget time'};

var lsbel = N50&.form getLabel ('budget _time'};
NSOR._form.error ('budget_time", "error message"™);

201

OpenAir checks scripts for correct syntax before allowing them to be deployed. An error is displayed if
you attempt to deploy a script with syntax errors.

This form has a problem. Please fix it and try again.

missing ; before statement at line 3 (workspace document
function test).

@ Note: This erroris caused because Var had been typed in place of var, JavaScript is case
sensitive. See Variables for more details.

Runtime errors — These errors occur during run time. OpenAir report runtime errors in the log.

createCustomerPO js Active - createCustomerPO After save Project

Click on the View Log link to see the log messages. See also Reporting.

Script Deployment Messages

[+
Severity # Timestamp @ Generatedby & Message & User &
Info 2013-05-12 07:0 System NSO0A form.getlabel2 is not a funcion Collins
1 row

This error was caused because the script attempted to call a method that doesn't exist, that is,
NSOA.form.getLabel2 does not exist.

| function test() {
‘ var value = NSOA.form.getValue('budget_time');
3 ‘ var label = NSOA.form.getLabel2('budget_time');
|}

In JavaScript missing methods can only be detected at runtime.

v Tip: Ifyou load the script into the Editor you can quickly find the line number reported in the
log.

Logic errors — These errors are the most difficult type to track down. They are not the result of a
syntax or runtime error. Instead, they occur when you make a mistake in the logic that drives your
script and you do not get the result you expected.

User Scripting OpenAir

Scripting Center | 24

v Tip: You can use the NSOA.meta.alert(message) function to log debugging information.

Important: Test scripts thoroughly in a Sandbox account before deploying to a Production
account.

See also Testing and Debugging.

Deploying Form Scripts

To deploy a form script:

1. Go to Administration > Scripting Center > Form. The list for form scripts appears.

2. In the status column, click the drop-down list for the form script you want to deploy and select
“Deploy”. A deploy script dialog appears.

3. Add notes for the script deployment (optional).

4. Select an employee to execute the script.

@ Note: Form scripts cannot be executed as an Administrator.

5. Click Save. A message will confirm that the script was deployed, and the list for the selected script
type appears.

Execute as User when Deploying Form Scripts

When deploying a script, you must select a user to execute the deployment. This user acts as a proxy, and
is needed when one user does not have the access permissions a script needs to run successfully.

The “Execute as User” feature is not intended as a replacement for using
NSOA.wsapi.disableFilterSet([flag]).

Administrators will not appear in the “Execute as User” list. Form scripts are explicitly prevented from
being deployed by Administrators.

User Scripting OpenAir

Scripting Center | 25

Form script deployments

euul Scheduled Library Parameters Solutions

Cancel

~ Pending form script deployment

Association
Folder

Code comments
(no message)

Event
Before approval

Entrance function
check_receipt_has_attachments

Notes

Select user to execute script deployment

Select... ~]| Q

v Tip: Create a dedicated user with the minimum necessary permissions to execute the script for
the “Select user to execute script deployment” feature.

Creating Scheduled Scripts

Scheduled Scripts are accessed from the Scheduled tab of the Scripting Center. See Scripting Switches to
enable this feature.

Scheduled scripts are created in a similar same way to form scripts and follow the same Scripting
Workflow. Notice that scheduled scripts have additional menu options available from the Status menu:

Run script deployment — Prompts for confirmation and on OK will add a one-time schedule event to
the platform script deployment job queue.

Cancel queued runs — Prompts for confirmation and on OK will cancel any jobs queued to run for
this script.

Scheduled scripts are not associated with a form and cannot access the NSOA.form functions.

To create a scheduled script:

1. Signin as an Administrator and go to the Scheduled tab on the Scripting Center.

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new scheduled script from the Create Button.

User Scripting OpenAir

Scripting Center | 26

G Scripting Center

Scheduled script deployments

Form [SICGUIE Library Parameters Solutions

New document

Administration All items Filename *

ProcessTimesheets js|

Select a document to upload

Browse... | Mo file selected

ifnofile is provided, empty script wil be created

New AP! Integration Application

Opportunit Scheduled script

TRETOTT —

Custom fields

Customers: Contact

. . Cancel
Customers: Customer

You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified

file and the original file left untouched.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

4. Type the script into the editor and then fill out fields in the Scripting Studio Tools and Settings:
a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.
b. Select any libraries referenced by this script.
c. Eventis fixed as ‘Scheduled'.

d. Select the Entrance function, the name of your function to run in the editor, see Entrance
Function.

e. Use the Code revision comments to comment the script changes made.
f. Click SAVE.

@ Note: The act of saving a script in the "Inactive” state will move the script to the "In testing”
state, see Scripting Workflow.

Testing Scheduled Scripts

Scheduled scripts can be run from the Run test code menu option form the Status menu.

Script & Solutions & Entrance function & Event & Test entrance function & Testevent & Status a Test employee @&
All ¥ All ¥ All ¥ All v All ¥ All v All v
Process_Timesheets js test xml main Schedule In testing - Collins, Marc
Deployment
Deploy

Disable testing
Manage libraries
Manage parameters

Manage custom fields

View history

Export solution
Execution

Run test code

Important: By default scheduled triggers are disabled on sandboxes. If you need to test
scheduled triggers in your sandbox account, create a support case in SuiteAnswers and request
the run_schedule_script trigger to be enabled for your sandbox account.

There are three types of errors you need to remove from your scripts.

User Scripting OpenAir

Scripting Center | 27

Syntax errors — These errors can be caught before your script is executed. Syntax errors are
displayed in the Editor.

For example:

function main() {
J// TODO Add Your Code Here

(S

J// TODO Handle Errors

// Notify The Owner
| Var me = NSOA.wsapi.whoami();

var msg = {
to: [me.id],
subject: "Script completed",
format: "HTML™,
body: "Your script completed
" +

"<hr/><i>Automatically sent by the system</i>"

] T A L

2

=
IR @0

¥s

OpenAir checks scripts for correct syntax before allowing them to be deployed. An error is displayed if
you attempt to deploy a script with syntax errors.

This form has a problem. Please fix it and try again.

misgsing ; before statement at line 3 (workspace document
function test).

@ Note: This error is caused because Var had been typed in place of var, JavaScript is case
sensitive. See Variables for more details.

Runtime errors — These errors occur during run time. OpenAir report runtime errors in the log.

createCustomerPO js Active - createCustomerPO After save Project

Click on the View Log link to see the log messages. See also Reporting.

Script Deployment Messages

2

Severity # Timestamp & Generatedby & Message & User &

Info 2013-05-12 07:0 System MSO0A form.gefLabel2 is not a funclion Collins

1 row

This error was caused because the script attempted to call a method that doesn't exist, that is,
NSOA.form.getLabel2 does not exist.

1 \ function test() {

2 ‘ var value = NSOA.form.getValue('budget_time");
3 ‘ var label = NSOA.form.getLabel2('budget_time');
4 ‘ }

In JavaScript missing methods can only be detected at runtime.

User Scripting OpenAir

Scripting Center | 28

v Tip: Ifyou load the script into the Editor you can quickly find the line number reported in the

log.

Logic errors — These errors are the most difficult type to track down. They are not the result of a

syntax or runtime error. Instead, they occur when you make a mistake in the logic that drives your
script and you do not get the result you expected.

v Tip: You can use the NSOA.meta.alert(message) function to log debugging information.

See also Testing and Debugging.

Deploying Scheduled Scripts

To deploy a scheduled script:

1.

Scheduled script deployments

Form [l ELINEVE Library Parameters Solutions

Cancel

- Pending scheduled script deployment

Code comments
(no message)

Event
Schedule

Entrance function
main

Notes

Select user to execute script deployment™

Select... v Q
Day Hour Minute
Monday ¥ | at | 12am v 25 v

Times are in U.5. Eastern Time. Repeat hours begin at midnight; repeat minutes begin at the top of the hour.
The default starting minute below is random.

User Scripting

Important: Test scripts thoroughly in a Sandbox account before deploying to a Production
account.

To deploy a scheduled script, select the Deploy option from the Status menu, see Scripting
Workflow.

Scheduled scripts are executed within the context of a user. You need to specify the user under
which the script is to be executed when you deploy the script.

As of the April 16, 2016 release, you can select a non-administrator user who acts as a proxy
to execute a script deployment. This is especially useful when a user does not have the access
permissions a script needs to run successfully. With this feature, you need only assign the
minimum-necessary permissions.

OpenAir

Scripting Center | 29

Scripts can be scheduled to run at any interval:

Example The script will run...

1st of the month at 12am 00 On the first day of every month at 00:00
Monday at 11am 00 Every Monday at 11:00

Monday at 11am 15 Every Monday at 11:15

Monday at 11am Every 15th minute Every Monday at 11:15, 11:30, and 11:45

Monday at Every hour 00 Every Monday at the top of each hour, for example 00:00, 01:00, ...,
22:00, 23:00
Every day 10am 30 Every day at 10:30

Scheduled Scripts and Scheduled Queue Status

The Started and Duration [sec] columns on the Scripting Center > Scheduled tab allows administrators
to monitor the processing of scheduled scripts in the queue. Refresh your screen to see the progress. The
Started and Duration [sec] columns are cleared when the script completes. For more information about
scheduled scripts, see User Scripting and Creating Scheduled Scripts.

Creating Library Scripts

Library Scripts are accessed from the Library tab of the Scripting Center. Libraries can be called from
both form and scheduled scripts. One library can call another library but circular relationships are not
allowed. Libraries are automatically available when form and / or scheduled scripts are enabled, see
Scripting Switches.

Library scripts are created in a similar way to form and scheduled scripts and follow the same Scripting
Workflow.

Library scripts are not associated with a form or event and can only access NSOA.form functions if called
from a form script.

References to libraries can be set from the Scripting Center Manage libraries or from the Scripting Studio
Scripting Studio Tools and Settings.

To create a library script:

1. Signin as an Administrator and go to the Library tab on the Scripting Center.

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new library script from the Create Button.

Library script deployments

Form Scheduled Parameters ~ Solutions

Scripting Center

G New document

Filename *

TimesheetLib.js|

Administration All items Select a document to upload

Browse... | No file selected

New AP Integration Application 3 Ifno file is provided, empty script will be created

Opportunit Library script

IO REPoTT

Custom fields Cancel

Customers: Contact

User Scripting OpenAir

Scripting Center | 30

You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified
file and the original file left untouched.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.
4. Type the script into the editor.

Library script deployments

Form Scheduled Parameters Solutions o
~ Scripting Studio View log
Employee 1 function namel () {
Collins, Marc Q 2
3 var user = NSOA.wsapi.whoami();
References 4
return user.name;
ALL SELECTED 6
o o 7}
9 exports.name2 = namel;
Selectall Clear all
Timesheet.js

Referenced by
MoCloseOpenlssues.js

Code revision comments

Comments for this document revision

Create functions in the same way as for form and scheduled script and then use exports to make
the function available. You have the option to change the name of the function that is exported.

Important: Functions created in a library are private to that library by default. You need
to use the exports keyword to make the function available to scripts calling the library.

v Tip: Ifyou don't see a function you are expecting in the Functions Explorer check that the
function has been exported and that the library does not contain any syntax errors.

5. Fill out the fields in the Scripting Studio Tools and Settings:
a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.
b. Select any libraries referenced by this library.
c. Use the Code revision comments to comment the script changes made.

d. Click SAVE.

User Scripting OpenAir

Scripting Center | 31

@ Note: The act of saving a script in the "Inactive” state will move the script to the "In testing”
state, see Scripting Workflow.

Important: You cannot deploy a script that references a library that is not deployed.

To use a library script:

1. Create a form or scheduled script, see Creating Form Scripts.

2. Reference the library either from the Scripting Center Manage libraries or from the Scripting Studio
Tools and Settings.

3. Use the library in the script.

Form script deployments

[l Scheduled Library Parameters Sclutions Berse

~ Scripting Studio View log
é?;iné‘i;nnn i function test() {
Employes 3 var Project = reguire('Project');
Collins, Mare v | & 5 NSOA.form.error('', "Hello" + Project.name2());

Execution displays internal form script deployment log error debug detail for this

user 7}

References

ALL SELECTED
(4] 1
Select all Clearall
Project.js
Timesheet.js

a. Use the require keyword to create a variable referencing the library.

b. Use methods of the variable to access the functions exported by the library, see Objects.

Creating Parameters

Script Parameters are accessed from the Parameters tab of the Scripting Center. Parameters can be
used by form, scheduled, and library scripts. Parameters are automatically available when form and / or
scheduled scripts are enabled, see Scripting Switches.

Parameters have account wide scope, changing the value for a parameter will affect all scripts using that
parameter.

References to parameters can be set from the Scripting Center Manage parameters or from the Scripting
Studio Script Parameters section.

To create a parameter:

1. Signin as an Administrator and go to the Parameters tab on the Scripting Center.

User Scripting OpenAir

Scripting Center

32

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new parameter from the Create Button.

G Scripting Center

Administration
New

Opportunit Al n Grid script paramete

cript paramete

ript parameter

ipt paramete

ript parameter

Dropdown script parameter

ipt paramete

script parametes

ipt parameter

Dropdown and Text script parameter

All items

AP Integration Application
Account-wide: Report
Custom fields

Customers: Contact

Customers: Customer

Customers: Customer location

Customers: Email templates

Gustomers: Prospect

Script parameters

Form Scheduled Library Solutions

New pick list script parameter ProjectClosed Stage

Pick List scriph

Ratio script parametes

Text script parameted

Employees: Employee
script parametel P P
Radio Group script parameter B N
Employees: Filter set
Employees: Guest
ea script parameter Employees: Role

Cancel

Name *
ProjectClosedStage
Required, no spaces allowed

Description
Project closed stage

Description of this custom field

List source *
Project stage v

Cancel

Create a parameter in the same way as you would create a custom field.

3. You can manage all the parameters from the Parameters tab in the Scripting Center.

Form Scheduled

All ﬂ
Name a
All ﬂ
DayOfiVeek

ProjectClosedStage

IssueOpenStage

3 rows

Library Solutions

Description

No Description
Project closed stage

ssue open stage

Type
All

Days
Pick List

Pick List

&
a Value a Referenced by a
(V]
Set
Set NoCloseOpenlssues.js
Set NoCloseOpenlssues js

a. Click on the Name of a parameter to edit its definition.

Referenced by a script.

@ Note: You cannot delete a parameter or change the name of a parameter that is

b. Click on Set to change the value selected for the parameter.

Important: A parameter can be referenced by more than one script. Changing
the value affects all scripts referencing the parameter. Form, scheduled, and library
scripts can reference parameters.

c. Click on the Referenced by script to open the script in the Scripting Studio.

User Scripting

OpenAir

To use a parameter:

Scripting Center

1. First create any parameters you need, see To create a parameter..

2. Reference the parameter either from the Scripting Center Manage parameters or from the

Scripting Studio Script Parameters.

33

3. You can use the NSOA.context.getParameter(name) or NSOA.context.getAllParameters() functions

to read the parameter values in your script.

1|// proj ect_stage_id and issue stage id depend on account settings
2 function test_prevent project_close with open issue() {

// return if new stage is not closed
if (NSOL.form.getValue ("project stage_id")

I= INSOA.context .getParameter ('"ProjectClosedStage’ 1}

return;

1 - o LN b

// Load issue data
g var issue = new NS0A.record.calssue():
issue.project id = NSCR _form ogetWalue ("idtl
issue.issue stage id =|NSOA.context.getParameter (' IssuelpenStage') ,'I

b

13 wvar readReguest = {
14 type : "Issue",

15 fields : "id, date",
16 methed : "egqual to",
17 objects : [issue],
18 attributes : [{

19 name : "limit",

20 value : "1%

21 H

22 1

4. Administrators can change the script values from the calling script in the Scripting Center.

50l Scheduled Library Parameters Solutions
All

o]
Script a Parameters a References & Status a Form name & Log &
All Active All
NoCloseOpenlssues js Ef;:gg?onfetgg?age Timesheet s Active B Project View Log

Click on the parameter name to change the value.

Important: A parameter can be referenced by more than one script. Changing the
value affects all scripts referencing the parameter. Form, scheduled, and library scripts can

reference parameters.

Creating Solutions

Form Library Parameters

Al
Status 4 Solution & Tide a
Al Al
Applied ¥) RWES 2xml RWES
Notapplied * validate_project commissionxml Ensure value of multiple commissions fields equals 100%

2rows

User Scripting

Description a

Real world example 8: prevent closing project with open issues

“This script checks to ensure that sales commission amounts equal 100% (1.00) before allowing the project to be saved
- Enrich records with additional sales management information.

- Easily reusablelextendible with minimal effort

- Might solve this case using allocation grid custom field, but this solution allows user pick lists and refains a more detailed audt trail
A new custom Commission Section has been added to the project form. A user script is triggered as the project saves to vaiidate

Log a

View Log

Nolog messages

OpenAir

Scripting Center | 34

Platform solutions are accessed from the Solutions tab of the Scripting Center. Solutions can be created
for form, scheduled, and library scripts. Solutions can also be used to create custom fields, script libraries,
and script parameters. Solutions are automatically available when form and / or scheduled scripts are
enabled, see Scripting Switches.

Solutions are stored in XML files so you can read, transfer, archive, and compare them. Solutions contain
a version tag to allow OpenAir to check that the solution file is compatible before applying.

Alog is created when a solution is applied to show exactly what the solution created and to record any
errors.

v Tip: Add the “Solutions” column on the “Form” or “Scheduled” screens to see which scripts are
contained in a solution.

Solution Status

A solution can be in one of three states:

Not applied — The solution has been uploaded.
Applied — The solution has been successfully applied.
Failed — The solution was applied but encountered errors.
Solutions create a log when they are applied to an account. For ‘Applied’ solutions you can view the log to

see which objects (scripts or parameters) the solution created. For ‘Failed’ solutions you can also see the
errors that occurred when the solution was applied.

Solution Actions

Not applied
Actions

Delete
Download

A solution can have the following actions:

Apply — Creates all objects specified in the solution and creates a log file. If successful the solution
status changes to ‘Applied'. If unsuccessful an error message is displayed and the solution status
changes to ‘Failed’. See To apply a platform solution:.

@ Note: This action is only available for solutions with the ‘Not applied’ status.

Delete — Deletes the solution with all its history and logs.

Important: This does not delete any objects created by the solution.

Download — Downloads the solution XML file that was uploaded.

To create a solution:

1. Go to Administration > Scripting Center > Solutions.

User Scripting OpenAir

Scripting Center | 35

2. Click the global Create button and select Create solution.

3. Name the solution and give it a title and description. Select the scripts to include in the solution
and select any additional parameters or custom fields. Solutions are built from existing active
scripts.

4. Click the > Create link under Documentation URL if you want to link to documentation describing
the solution. After the link is created, click the link in the Documentation URL column in the
Solutions tab to open the document.

Select which scripts (including Library scripts) the solution will run from the Scripts selection list.
Select which custom fields the solution will create from the Custom fields selection list.

Select which script parameters the solution will create from the Script parameters selection list.

®© N o O

Click Save.

©

Note: You only need to select additional custom fields and parameters. When you select a
script, the solution will automatically pull in the script's required libraries and parameters. OpenAir
ignores duplicate selections.

To create a platform solution from a single script:

1. Signin as an Administrator and go to the Scripting Center.

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Goto the Form, Scheduled, or Library script you want to create the solution for.

3. Select the Export solution option from the script status menu.

Active v

Active

Deployment
Revise

Undeploy
View history
Export solution

@ Note: You can create a solution for any script that is not ‘Inactive’. See Scripting Workflow.

4. Enter the name, title, and description for the solution file and SAVE.

v Tip: The solution will contain all library scripts and parameters referenced by the script. To create
a solution without a certain reference, first remove the reference from the script and then create
the solution.

To apply a platform solution:

1. Signin as an Administrator and go to the Solutions tab on the Scripting Center.

@ Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Select Upload solution from the Create Button.

User Scripting OpenAir

Scripting Center | 36

G Scripting Center

Home Administration All items ~

New APl Integration Application

Create solution Account-wide: Report

Upload solution
Custom fields

@ Note: You are not allowed to upload an invalid solution file.

3. Select the Apply option from the status menu.

Not applied A

Not applied
Actions

Delete

Export

Accessing Terminology

Remember, all terminology can be customized to meet the unique needs of your company, see Script
Terminology. You can allow for changes in terminology by using terminology phrases in your script.

A terminology phrase takes the form "%project%" which is the internal ID for the term surrounded by ‘%’
characters. Use the Terminology section in the Scripting Studio to lookup the internal identifiers to use.

Notice that there are two forms for a term. For example, project and A_project. The second form will
return the correct indefinite article (a/an) required for the term.

v Tip: Singular/plural and capitalization are respected in parsing the terminology.

You can access terminology with the following functions:

NSOA.context.getAllTerms()
NSOA.context.getTerm(termid)

NSOA.context.parseTerminology(message)
Terminology phrases are directly parsed in log and error messages:

NSOA form.error(field, message)
NSOA.meta.alert(message)

NSOA.meta.log(severity, message)

To use terminology in scripts:

User Scripting OpenAir

Scripting Center | 37

1. Administrator set account terminology from Administration > Global Settings > Display > Interface:
Terminology.

@ Note: You only need to enter the replacement term in its singular form. OpenAir
automatically generates the plural term where applicable.

2. Scripts can look up a term using the NSOA.context.getTerm(termid) function
and can use "%TERMID%" phrases in strings and parse them with the
NSOA.context.parseTerminology(message), NSOA.form.error(field, message),
NSOA.meta.alert(message), and NSOA.meta.log(severity, message) functions.

1 | var proj_term = NSOA.context.getTerm("Projects");
2 | // proj_term = "Jobs"

+ | var msgl = NSOA.context.parseTerminology("%Project% saved!");
// msgl = "Job saved!"

var msg2 = NSOA.context.parseTerminology("Notes attached to %project%.");
// msg2 = "Notes attached to job."

// Automatic terminology parsing

NSOA. form.error("", "%Project% saved!");
NSOA.meta.alert("%Project% saved!");
NSOA.meta.log("Info", "%Project% saved!");

@ Note: Singular/plural and capitalization are respected in parsing the terminology.

3. Users see the messages displayed with the correct account terminology.

Scripting Studio

Form script deployments

Zl Scheduled Library Parameters Solutions Cancel

~+ Scripting Studio No log messages validate_ticket_attachment js

Assotiation] :
Eroncs maport i function check_receipt_has_attachments(type) {
3 // return if not an approve request
Employee a if (type != 'apprcveingues¥‘)q
Collins, Marc v | Q 5 return;
Exetution displays internal form seript deployment log error debug detail for this /7 Load receipt data
8 var envelope = NSOA.form.getOldRecord();
References var ticket = new NSOA.record.oaTicket();
ticket.envelopeid = envelope.id;
ALL SELECTED
var readRequest = {

type: "Ticket",

fields: "id, attachmentid, reference_number, missing_receipt”,

method: "equal to",

objects: [ticket],

attributes: [{

name: "limit",

Selectall Clearall

DateHelperjs

Projectjs . value: "250"
SOAPjs 1}
Timesheet js var arrayOfreadResult = NSOA.wsapi.read(readRequest);
var missingAttachment = [1;
if (larrayDfreadResult || larrayOfreadResult[@])
NSOA.form.error('', "Internal error reading envelope receipts.");
else if (arrayDfreadResult[8].errors === null && arrayOfreadResult[8].objects)
arrayOfreadResult[0].objects.forEach(
function(o) {
Event if (o.attachmentid === @ & o.missing_receipt I= '1')

Before approval v missingAttachment.push(o.reference_number);

K
)s

if (missingattachment.length > 0) {
NSOA. form.error("

Entrance function
check_receipt_has_attachments ¥

"The following receipts (by reference number) are mizsing an attachment: " +

Code revision comments missingAttachment.join(", "));

Comments for this document revision

The Scripting Studio is accessed by clicking on a script link in the Scripting Center.

User Scripting OpenAir

Scripting Studio | 38

From the Scripting Studio a script developer can quickly create scripts with a full screen editor supported
by intuitive tools with drag-and-drop:

= Scripting Studio Tools and Settings
= SOAP Explorer

= Functions Explorer

= OData Explorer

= Script Parameters

= Terminology

= Form Schema

= Testing and Debugging

= Editor

You can view any log messages the script has generated by clicking on the View Log link at the top—left
of the editor, see also Testing Form Scripts

Scripting Studio Tools and Settings

- Scripting Studio

Association
Expense report

Employee
Collins, Marc ¥ Q

Execution displays internal form script deployment log error debug detail for this
user

References

ALL SELECTED

Select all Clear all
DateHelper.js
Project.js
SOAPRjs

Timesheet js

Event

Before approval v

Entrance function

check_receipt_has_attachments ¥

Code revision comments

Comments for this document revision

User Scripting OpenAir

Scripting Studio

Association — An individual script can only be associated with one form and this is set when the

script is created. The same script cannot be triggered by two different forms or even form events. An
individual form may trigger as many scripts as necessary.

Employee — This is the user that will test the script, see Testing and Debugging for more details.

References — Select the libraries that are used by this script.

Event — This is the event that will trigger the script to run, see Events.

Entrance function — This is the name of the function to run, see Entrance Function.

Code revision comments — These are optional notes that the developer can add.

SOAP Explorer

~ SOAP explorer

Objects
oaActualcost v

Attributes

cost b

cost

cost_typeid OA record.ocafctualcost();
created

cumency

date
externalid
id
is_accrual
name
notes
period
updated
userid

39

From the SOAP explorer you can browse through the SOAP API objects and attributes, and view examples
of usage. Select a SOAP object, then select an attribute to view a code example using information for that

object and attribute.

~ SOAP explorer

Objects
oaActualcost ~]

Aftributes
currency [v|

ar obj = new NSOA record.oaActualcost();]

obj.currency ="

L

You can drag and drop code examples directly into the editor. See also the Auto List & Complete feature.

User Scripting

OpenAir

Scripting Studio | 40

Functions Explorer

~ Functions explorer

NSOA_context
getAllParameters() : Array ~
getAllTerms() : Array
getParameter(name) : Boolean|Date|Cbject|String
getTerm({termld) : String
isTestMode() : Boolean
parseTerminology(message) - String
remainingTime() : Integer
remainingUnits() : Integer
NSOA. form
confirmation(message) : Boolean
error(field, errorMessage) : Boolean
getAlValues() : Array
getLabel(field) : String
getName(field) : String
getOldRecord() : oaBase
getValue(field) : Boolean|Date|Object|String
get_value(field) : String
warning(message) : Boolean
SOA meta

alert{imessage) : Boolean
log(severity, message) : Boolean
sendMail(message) : void

NSOA wsapi
add(objects) - Array
delete(objects) : Array
disableFilterSet(Boolean) : Boolean
enableLog(Boolean) : Boolean (V]
modify(attibutes, objects) : Array

The functions explorer acts as an online cheat sheet showing the syntax for all the available NSOA
functions and for any selected library. Select a function to view an example of usage.

- Functions explorer

Functions
getMewRecord() : caBase

Example
/i Get the new record values
var newr = NSOA form.getNewRecord(); ~

I Create a new rerard with field tn mndife
ar project i Create a new record with field 1 maodify
project.id = ¥al project = new NSOArecord:oaProjeci();
internal jd [Proiectid = newr.id; /f Need o specify the
ternal id

A2
/i New value for field r\“‘-)
projectnotes = newr.notes + "\nAppended to |

You can drag and drop code examples directly into the editor. See also the Auto List & Complete feature.

OData Explorer

Use the OData explorer to browse your published OpenAir reports and lists, and the columns available

in these resources. Select the resource type (published list or published report), the resource, and the
column, to view a code example using information in that resource and column. Select and drag the code
example into the editor pane to use the snippet in your script.

The OData explorer shows both the OData resource ID and the saved list or saved report title. This helps
you identify and reference the correct OData resource by ID directly from the scripting studio.

See also Business Intelligence Connector and the following user scripting functions:

= For reports: NSOA.report.data(reportld,optionalParameters) and NSOA.report.list().

User Scripting OpenAir

Scripting Studio | 41

For lists: NSOA listview.data(listviewld) and NSOA.listview.list()

@ Note: This functionality is available only if the Business Intelligence Connector feature is enabled
for your account. The Business Intelligence Connector feature is a licensed add-on. To enable this
feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Form script deployments

a0yl Scheduled Library Parameters Solutions

| A N

~ OData explorer
Types

Published list views w

Resources
[3] All Projects ~

Fields
Project_owner W

var iterator = NSOA listview data(3);

I get the first record from iterator
wvar record = iterator.next();

var value = record["Project_owner"];

]

Script Parameters

From the script parameters section you can see all the parameters available in the account and select
parameters used in the script.

~ Script parameters

ALL SELECTED
Selectall Clear all
IssueOpenStage

Example
NSOA context getParameter(lssueOpenStage’)

User Scripting OpenAir

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

Scripting Studio | 42

Click on a selected parameter to see an example. You can drag and drop code examples directly into the
editor.

See also Creating Parameters.

@ Note: Referencing a parameter prevents the parameter from being deleted or changed in a way
that will affect the script. See also the Auto List & Complete feature.

Terminology

From the terminology section you can browse through all the terminology available in OpenAir and see
the terms set for the current account.

~ Terminology

Terminclogy [View by intemal ID]

employee [user] V]

Example

wvar my_term = NSOA context getTerm('user’); A
Il my_term = "employee”

v

Select a term to see an example. You can drag and drop code examples directly into the editor.

See Accessing Terminology for details.

Form Schema

The Form schema allows you to explore the form you are creating the script for. This provides vital

information as you need to know the names of the fields and the structure of the objects so you can
reference them in your scripts.

~Form schema

Fields [view by param]
Budget (hours) [budget_time] <Number> ﬂ
Applicable to Testing & Debugging selected Test event

Data structure/types & Examples
Number

var value = N3OA form getValue('budget_time');
var label = NSOA form getlLabel('budget_time'); A

NSOA form.error(’budget_time’, "An error v
message”);

The Fields drop-down list at the top gives a complete list of the avail