
User Scripting

October 9, 2024

2024.2

Copyright © 2013, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such
programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

If this document is in public or private pre-General Availability status:

This documentation is in pre-General Availability status and is intended for demonstration and preliminary
use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of
this documentation.

If this document is in private pre-General Availability status:

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your pre-General
Availability trial agreement only. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, timing, and pricing
of any features or functionality described in this document may change and remains at the sole discretion
of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms
and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has
been executed by you and Oracle and with which you agree to comply. This document and information
contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://
www.oracle.com/pls/topic/lookup?ctx=acc&id=trsif you are hearing impaired.

Sample Code

Oracle may provide sample code in SuiteAnswers, the Help Center, User Guides, or elsewhere through
help links. All such sample code is provided "as is” and “as available”, for use only with an authorized
NetSuite Service account, and is made available as a SuiteCloud Technology subject to the SuiteCloud
Terms of Service at www.netsuite.com/tos, where the term “Service” shall mean the OpenAir Service.

Oracle may modify or remove sample code at any time without notice.

No Excessive Use of the Service

As the Service is a multi-tenant service offering on shared databases, Customer may not use the Service
in excess of limits or thresholds that Oracle considers commercially reasonable for the Service. If Oracle
reasonably concludes that a Customer’s use is excessive and/or will cause immediate or ongoing
performance issues for one or more of Oracle’s other customers, Oracle may slow down or throttle
Customer’s excess use until such time that Customer’s use stays within reasonable limits. If Customer’s
particular usage pattern requires a higher limit or threshold, then the Customer should procure a
subscription to the Service that accommodates a higher limit and/or threshold that more effectively aligns
with the Customer’s actual usage pattern.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.netsuite.com/tos

Table of Contents
Introduction . 1

User Scripting Overview . 1
Getting Started . 4
Logs . 6
Reporting . 11
Platform Role Permissions . 12
Scripting and OpenAir Mobile . 14
Scripting and NetSuite Integration . 15

User Scripting . 16
Scripting Center . 16

Scripting Workflow . 20
Creating Form Scripts . 21
Testing Form Scripts . 23
Deploying Form Scripts . 24
Creating Scheduled Scripts . 25
Testing Scheduled Scripts . 26
Deploying Scheduled Scripts . 28
Scheduled Scripts and Scheduled Queue Status . 29
Creating Library Scripts . 29
Creating Parameters . 31
Creating Solutions . 33
Accessing Terminology . 36

Scripting Studio . 37
Scripting Studio Tools and Settings . 38
SOAP Explorer . 39
Functions Explorer . 40
OData Explorer . 40
Script Parameters . 41
Terminology . 42
Form Schema . 42
Testing and Debugging . 45
Editor . 46
Scripting Studio Options . 48

Entrance Function . 49
Events . 50
Scripting Governance . 52
SOAP API . 54

Making SOAP Calls . 55
Using SOAP Results . 59
Handling SOAP Errors . 61

Outbound Calling . 62
Request . 63
Response . 63
Limits . 63
Password Script Parameters . 64

Scripting Approvals . 64
Working with the Approvals System .. 65
Using Approval Results . 67
Handling Approval Errors . 67

Custom Fields . 68
Creating Custom Fields . 68
Reading Custom Fields . 70
Updating Custom Fields . 71

NSOA Functions . 72
NSOA.context.getAllParameters() . 74
NSOA.context.getAllTerms() . 75
NSOA.context.getLanguage() . 75
NSOA.context.getParameter(name) . 76
NSOA.context.getTerm(termid) . 77
NSOA.context.isTestMode() . 78
NSOA.context.parseTerminology(message) . 79
NSOA.context.remainingTime() . 79
NSOA.context.remainingUnits() . 80
NSOA.form.confirmation(message) . 81
NSOA.form.error(field, message) . 82
NSOA.form.getAllValues() . 83
NSOA.form.getLabel(field) . 84
NSOA.form.getName(field) . 85
NSOA.form.getNewRecord() . 86
NSOA.form.getOldRecord() . 87
NSOA.form.getValue(field) . 88
NSOA.form.get_value(field) . 89
NSOA.form.setValue(field, value) . 90
NSOA.form.warning(message) . 94
NSOA.https.delete(request) . 95
NSOA.https.get(request) . 96
NSOA.https.patch(request) . 98
NSOA.https.post(request) . 99
NSOA.https.put(request) . 100
NSOA.listview.data(listviewId) . 101
NSOA.listview.list() . 103
NSOA.meta.alert(message) . 104
NSOA.meta.log(severity, message) . 105
NSOA.meta.sendMail(message) . 106
NSOA.NSConnector.integrateAllNow() . 108
NSOA.NSConnector.integrateRecord() . 109
NSOA.NSConnector.integrateWorkflowGroup(name) . 110
NSOA.record.<complex type>([id]) . 111
NSOA.report.data(reportId,optionalParameters) . 113
NSOA.report.list() . 114
NSOA.wsapi.add(objects) . 116
NSOA.wsapi.approve(approveRequest) . 117
NSOA.wsapi.delete(objects) . 118
NSOA.wsapi.disableFilterSet([flag]) . 118
NSOA.wsapi.enableLog([flag]) . 119
NSOA.wsapi.modify(attributes, objects) . 121
NSOA.wsapi.read(readRequest) . 122
NSOA.wsapi.reject(rejectRequest) . 123
NSOA.wsapi.remainingTime() . 124
NSOA.wsapi.submit(submitRequest) . 124
NSOA.wsapi.unapprove(unapproveRequest) . 125
NSOA.wsapi.upsert(attributes,objects) . 126
NSOA.wsapi.whoami() . 127

Code Samples . 128
Comparing Date Fields . 128
Validating Numeric Fields . 129
Requiring Minimum Values . 129
Creating Error Log Entries . 129

Sending email . 130
SOAP API — Prevent closing a project with an open issue . 130
SOAP API — Append notes to a project . 131
SOAP API — Require task assignment . 131
Submitting a Timesheet for Approval . 132
Outbound Calling — SOAP Call Using HTTPS POST . 133
Outbound Calling — Post a Slack Message . 133
Outbound Calling — HTTPS GET with Authorization . 134

JavaScript . 136
JavaScript Overview . 136
Variables . 136

Variable Scope . 137
Dynamic Data Types . 138

Arrays . 139
Associative Array . 140

Objects . 141
Functions . 142
Loops . 143

for . 144
for in . 144
forEach . 144
do while . 145
while . 145

Conditional Statements . 145
if ... else . 146
switch . 147

Error Handling . 147
References . 148

JavaScript Objects . 148
JavaScript Operators . 155
Reserved Words . 157
Escape Sequences . 158

Scripting Best Practices . 159
Real World Use Cases . 162

Validation . 164
Ensure value of multiple commissions fields equals 100% .. 164
Require notes field to be populated on time entries when more than 8 hours in a day 166
When submitting an expense report, validate each ticket has an attachment (e.g. scanned
receipt) . 168
Ensure resource time entry matches booking planning and project worked hours 170

Automation . 173
Optionally create a new Customer PO when editing a project . 173
Create time entries from task assignments when the user creates a new timesheet 177
Control budgeted hours for a project using the project budget feature and a custom hours
field . 181

Workflow . 183
Prevent a booking from being created if the selected resource has approved time off during the
booking period . 183
Prevent closing a project that has open issues . 186
Automatically create a new issue when project stage is "at risk" and prevent project stage from
changing until this issue is resolved . 188
Send an alert email when a scheduled script completes . 191
Send a Slack notification when issues are created or (re)assigned . 192

User Scripting Release History . 206

Introduction 1

Introduction

User Scripting Overview
User scripting is one component of the OpenAir platform, allowing you to customize OpenAir to better
meet the unique needs of your business. OpenAir supports Form Scripts, Scheduled Scripts, Library
Scripts, and Script Parameters.

User scripts are written in the industry standard JavaScript language. OpenAir is compliant with
ECMAScript 5.

To ensure the security and stability of OpenAir, constraints and checks are placed on user scripting, see
Scripting Governance. User scripting is prevented from accessing DOM methods, the file system, and
sockets. Access to OpenAir is made available through NSOA Functions.

Scripts are stored in a Dedicated Scripting Workspace used exclusively for scripting and can only be
altered through the Scripting Center. Scripts can be edited from the integrated Scripting Studio or
by an external editor. To use the Scripting Center or Scripting Studio you need to be signed in as an
administrator.

Before you begin writing scripts, you should review Scripting Best Practices.

Tip: For a quick reference, see the User Scripting Reference Card.

Scripting Switches
There are four switches used to control scripting:

■ Enable user scripts to be executed by forms — enables the Scripting Center with the Forms tab
and enables you to create Form Scripts. This switch also enables the Script deployment detail report
section with the Form script deployment logs report, see Reporting.

■ Enable scheduled script deployments — enables the Scripting Center with the Scheduled tab and
enables you to create Scheduled Scripts. This switch also enables the Script deployment detail report
section with the Scheduled script deployment logs report, see Reporting.

■ Enable user script support for https methods — enables you to access NSOA.https functions and
call external APIs. See Outbound Calling.

■ Enable user script support for Web Service API methods — enables you to access the SOAP API
(Web Services) through the NSOA.wsapi functions. SOAP API.

Note: Contact OpenAir Customer Support to enable these features.

There is one role used to control access to scripting reports:

■ There is a View the script deployment log report role permission to enable non-administrators to
view script deployment log reports, see Reporting.

Form Scripts
Form scripts are triggered to run by Events. When you create a form script it must be associated with a
specific form.

User Scripting

https://app.openair.com/download/UserScriptingReferenceCard.pdf

User Scripting Overview 2

Deploying a form script consists of specifying:

■ Event — The event to trigger the script to run, see Events.

■ Entrance function — The function defined in the script (attached to the form) you want called, see
Entrance Function.

See Creating Form Scripts.

Note: Form scripts are executed within the context of the user who is signed in, see
NSOA.wsapi.disableFilterSet([flag])

Important: Form scripts may be triggered by an event associated with user interaction —
when a user clicks Save, for example.

Form scripts can also be triggered by an event associated with a process utilizing the form
software logic — when importing project records from NetSuite using OpenAir NetSuite
Connector, for example, depending on the integration configuration. For more information, see
Scripting and NetSuite Integration.

Scheduled Scripts

Scheduled scripts are created in a similar same way to form scripts and follow the same scripting
workflow. The main differences are that scheduled scripts are not associated with a form, have higher
Scripting Governance limits, and are executed according to a schedule defined when they are deployed.

Scripts are executed one at a time from a single first in first out (FIFO) queue.

See Creating Scheduled Scripts.

User Scripting

User Scripting Overview 3

Tip: Two or more scripts with the same schedules times that need to run in a specific order
should be merged into a single script, that is merge into one script with one Entrance Function
calling each of the three functions in the desired order.

Note: Scheduled scripts are executed within the context of a user. You need to specify the user
under which the script is to be executed when you deploy the script.

Tip: By default scheduled triggers are disabled on sandboxes. If you need to test scheduled
triggers in your sandbox account, create a support case in SuiteAnswers and request the
run_schedule_script trigger to be enabled for your sandbox account.

Library Scripts
Library scripts are created in a similar same way to form and scheduled scripts and follow the same
scripting workflow.

Library scripts allow you to package the complexity of a scripted solution into calling scripts and
supporting functions resulting in scripts that are easier to build and maintain. You can build libraries
of proven functions to reduce the cost of development and maintenance. Libraries are seamlessly
integrated into the Scripting Studio to boost developer productivity.

See Creating Library Scripts.

Script Parameters
Script parameters allow developers to create scripts that can be configured without needing to change
the script. Parameters are created and set in the same way as custom fields.

See Creating Parameters.

Script Terminology
Administrators can customize the terminology used in OpenAir to meet the unique needs of
their company. For example, one company may use the word project to describe work to be
accomplished. Another company may call it a case, job, or assignment. See Interface: Terminology
in Administrator Guide Chapter 6 "Administration - Global Settings" for more information about
customizing terminology in OpenAir.

The terminology set for an account can be directly accessed and used in scripts to create results that
meet the unique needs of the company.

Scripts can be written to immediately reflect any terminology changes made by an administrator without
the need to adjust the scripts in any way.

See Accessing Terminology.

Platform Solutions
You can create scripts and store them with all their dependent libraries and parameters in a single
solution (XML) file. You can then apply the solution directly to another account. Solutions are stored in
XML files to facilitate reading, transfering, archiving, and comparing them.

User Scripting

https://app.openair.com/download/AdministratorGuide.pdf

User Scripting Overview 4

Tip: All of the examples described in Real World Use Cases are provided as solutions, see
Creating Solutions.

Business Intelligence Connector
The Business Intelligence Connector feature lets you publish OpenAir reports and list views to the
OpenAir OData service. Reports can be published with different scope of use. All published reports are
accessible with user scripting. You can publish reports for use with user scripting exclusively.

You can access the reports and lists published using the Business Intelligence Connector feature with the
following functions:

■ For reports: NSOA.report.data(reportId,optionalParameters) and NSOA.report.list().
■ For lists: NSOA.listview.data(listviewId) and NSOA.listview.list()

These functions give you access to the same information available when you use Business Intelligence
tools to access your OpenAir OData feed.

You can use published lists like custom queries and read the latest list data in your OpenAir form and
scheduled scripts.

Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Getting Started
With scripting enabled the Scripting Center section is available in Administration, see Scripting Switches.

Note: This also enables the Scripts section in Modify the form permissions forms and in
Administration > Customization.

Quick Start

1. Sign in as an Administrator and go to the Scripting Center section.

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new script from the Create Button. See Creating Form Scripts and Creating Scheduled
Scripts.
You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified
file and the original file left untouched.

Note: An individual script can only be associated with one form. The same script cannot
be triggered by two different forms or even form events. An individual form may trigger as
many scripts as necessary.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

Getting Started 5

4. Type the script into the editor and then fill out the fields in the Scripting Studio Tools and Settings:
a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.
b. Select any libraries referenced by this script.
c. Select the Event to trigger the script, see Events.
d. Select the Entrance function, the name of your function to run in the editor, see Entrance

Function.
e. Use the Code revision comments to comment the script changes made.
f. Click SAVE.

Note: The act of saving a script in the ”Inactive” state will move the script to the ”In testing”
state, see Scripting Workflow.

5. The script will now run when the SAVE button is pressed on the form to which it has been
deployed.

Important: Test your scripts in a sandbox account before deploying to a production
account.

6. To deploy the script, select the Deploy option from the Status menu, see Scripting Workflow.

User Scripting

Getting Started 6

For more details see:

■ Scripting Center — How to build, test, and deploy your scripts.
■ Scripting Studio — Details on the OpenAir IDE.
■ NSOA Functions — Details on the functions provided to access OpenAir.
■ JavaScript — How to use the JavaScript language.
■ Code Samples — OpenAir user script examples.
■ Real World Use Cases — Larger examples provided to assist you in developing your own scripts.

Logs
Script logs are the primary means for Testing and Debugging a script and for monitoring the health of a
deployed script. Any errors that occur during run time are written to the script log.

Scripts can write to the log using the NSOA.meta.log(severity, message) and NSOA.meta.alert(message)
functions. Detailed SOAP API request and response messages can also be logged by calling the
NSOA.wsapi.enableLog([flag]) function from within a script.

Each log entry contains the following information:

■ Severity — The supplied severity: "Fatal", "Error", "Warning", "Info", "Debug", or "Trace".
■ Timestamp — The time the message was logged.
■ Generated by — For example, whether the message was generated by your script or by OpenAir.
■ Message — The full message text.

Note: OpenAir adds a log entry when one of the following script properties is changed, with
an indication of what was changed: Source code, Event, Entrance function, Deployed status,
Employee.

■ User — The user who triggered the script.
■ Internal ID — The internal ID of the log message. Sorting log entries by their Internal ID may be

useful for debugging scripts when multiple log messages are recorded in the same second and you
need to know the order the messages were recorded in.

Tip: If you load the script into an Editor you can quickly find the line number reported in the log
message, see Testing Form Scripts.

View Log
You can view any log messages a script has generated by clicking the "View Log" link from the Scripting
Center and Scripting Studio, see also Reporting.

User Scripting

Logs 7

The log view has the following standard OpenAir features:

1. Filter log entries

2. Sort log entries

3. Customize list

4. Download list data as a CSV, HTML, and PDF formatted file

5. Set the number of rows displayed on a page

Note: Errors generated by a library are reported into the calling form or scheduled script.
Libraries do not have separate logs.

Administrators can control the messages that are written to deployed scripts by setting the Log Severity
for the script.

You can see how many log entries are part of a log without having to open each log with the “Display the
number of logs at 'View logs' link” feature. This feature shows a count of log entries as part of the "View
Log" link for Form and Scheduled Script Deployments.

User Scripting

Logs 8

The number of logs also appears next to the "View Log" link in the Scripting Editor.

To use this feature, go to the User Menu > Personal Settings > Scripting Studio Options and select the
"Display the number of logs at 'View logs' link" option.

Log Severity
Script logs recognize the following severities: "Fatal", "Error", "Warning", "Info", "Debug", or "Trace".

Note: If a severity is used that the log system does not recognize then it is written as an "Info"
severity.

The NSOA.meta.log(severity, message) function takes two parameters, the first is severity and the second
is the message to log. The NSOA.meta.alert(message) function takes a message parameter and writes
"Info" severity message.

Severity is case insensitive so the following calls are all treated as the same:

NSOA.meta.log('debug',"message");
NSOA.meta.log('Debug',"message");
NSOA.meta.log('DEBUG',"message");

The following are also treated as the same:

NSOA.meta.log('myseverity',"message");
NSOA.meta.log('Info',"message");

This is the same as calling:

User Scripting

Logs 9

NSOA.meta.alert("message");

If you trigger a script that is either "In testing" (or "Active revising" and you are signed in as the test user)
then ALL log messages are logged.

If you trigger a script that is "Active" (or "Active revising" and you are not signed in as the test user) then
the log messages written are controlled by the Log severity set for the script in the Scripting Center.

Non-deployed scripts log all messages but deployed scripts log messages according to the Log severity
setting.

Calls to NSOA.meta.log(severity, message) with the severity parameter set to "Debug" or "Trace" do not
consume units but are limited to a maximum of 1000 per script.

The default Log severity level for deployed scripts is "Error". This means that only "Error” and "Fatal"
severities are written to log. In this case "Trace", "Debug", “Info”, and “Warning” messages are simply
ignored.

Administrators can set the Log severity level for deployed scripts.

Note: "Fatal" and system generated messages are ALWAYS logged! A system Info message is
written to the log when the log severity is changed.

Tip: You can set the log severity to "Warning" or "Error" to save space and improve system
performance for scripts that are operating correctly and generating log information that you are
sure you don’t need.

Tip: You can set the log severity of a deployed script to "Debug" to track down errors that only
occur for a deployed script.

See Scripting Return Codes for more details.

Trace Level Logs
Fatal "User script timed out" log messages are followed by "Trace" log messages which break down
the time used in the script to assist you in identifying the root cause of the time out. The log messages
indicate the time taken by each function call in the script.

User Scripting

Logs 10

Clear Log Entries for a Specific Script
You can clear all log entries for a specific script from the Scripting Center.

To clear log entries for a script

1. Go to Administration > Scripting Center.

2. Click the status dropdown for the script in the Status column, then click Clear log.

A confirmation dialog appears.

3. Click OK to clear the logs.

If there were any log messages to be cleared, the log now contains a single entry indicating that
the log was cleared manually.

Delete Log Entries
The delete log entries maintenance task is available to allow administrators to delete log entries that are
no longer needed. This can be useful to save space and create smaller backup files.

User Scripting

Logs 11

The delete logs task is available from Administration > Global Settings > Account > Maintenance Settings.

Tip: Use this maintenance task when your system is not busy and ensure not to delete log
entries that you may need.

Important: You should keep at least the last 30 days of log.

Reporting
This section contains the Form script deployment logs report and the Scheduled script deployment logs
report.

To view the Form script deployment logs detail report you need the Enable user scripts to be
executed by forms switch enabled.

To view the Scheduled script deployment logs details report you need the Enable scheduled script
deployments switch enabled.

Non-administrators can see the reports if they have been assigned the View the script deployment log
report role permission.

Form script deployment logs

This report allows you to view all the log messages for all form script deployments. See
NSOA.meta.log(severity, message) for more details.

You can also see the SOAP request and response messages if NSOA.wsapi.enableLog([flag]) is used in a
script.

User Scripting

Reporting 12

To view this report, you need the Enable user scripts to be executed by forms switch enabled.

There is a View the script deployment log report role permission for non-administrators to view this
report.

Scheduled script deployment logs

This report allows you to view all the log messages generated by all scheduled script deployments. See
NSOA.meta.log(severity, message) for more details.

To view this report, you need the Enable scheduled script deployments switches enabled.

There is a View the script deployment log report role permission for non-administrators to view this
report.

Scripting Return Codes
The following return codes may appear in scheduled script or form script deployment logs.

Return Code Description

0 OK/Success

100 Unknown error

101 Compilation error

102 Script timed out

103 Script used all units

104 Uncaught JavaScript exception

105 Uncaught Perl exception

Platform Role Permissions
As of the April 16, 2016 release, Administrators can assign Platform Roles to users to control access to
critical features of the Scripting Center and Scripting Studio. You can create Platform Roles by navigating
to Administration > Roles. You should create the following roles:

■ Script Administrator
■ Script Developer
■ Script QA
■ Script Deploy

Roles can be assigned several role permissions:

User Scripting

Platform Role Permissions 13

■ View Scripting Center — allows you to access and view the Scripting Center by navigating to
Administration > Scripting Center.

■ Create script — allows you to create a new script.
■ Change script log level — allows you to set what types of information to log.
■ View script in Scripting Studio — allows you to view a script in the Scripting Studio.
■ View and modify script in Scripting Studio — allows you to view a script and make changes to it in the

Scripting Studio.
■ Enable script testing — allows you to move a script to “In testing” status.
■ Upload script revision code — allows you to upload new code revisions after a script has been

deployed.
■ Disable script testing — allows you to move an “In testing” script to “Inactive” status.
■ Discard script changes — allows you to discard any script changes made since the last save.
■ Deploy new script — allows you to save a new script and move it to “Active” status.
■ Deploy script changes — allows you to save changes to an “In testing” script and move it to “Active”

status.
■ Undeploy script — allows you to move an “Active” script to “In testing” status.
■ Delete script — allows you to delete a script.
■ Set form script “Execute As Employee” — set an employee for script deployment when running a script

under another user.
■ Run schedule script test code — allows you to run schedule script test code in either “In testing” or

“Active: revising” states.
■ Run schedule script code — allows you to run currently deployed script code.
■ Cancel schedule script queued runs — allows you to cancel any previously-scheduled runs waiting for

processing in the queue.
■ View script parameters — allows you to view, create, and modify script parameters.
■ View and modify script parameters — allows you to view, create, and modify script parameters.
■ Set script parameter value — allows you to use the “Set” link for the script parameter value.
■ View solutions — allows you to view solutions, but not edit them.
■ View and modify solutions — allows you to view, create, and modify solutions.
■ Export solution — allows you to export a solution based on a particular script deployment.
■ Upload solution — allows you to upload a solution XML file.
■ Apply solution — allows you to create all objects specified in a solution and create a log file.
■ Delete solution — allows you to delete a solution, all of its history, and logs.

We suggest creating the following roles and assigning them these permissions:

Permissions Script Administrator Script Developer Script QA Script Deploy

View Scripting Center

Create script

Change script log level

View script in Scripting Studio

View and modify script in
Scripting Studio

User Scripting

Platform Role Permissions 14

Permissions Script Administrator Script Developer Script QA Script Deploy

Enable script testing

Upload script revision code

Disable script testing

Discard script changes

Deploy new script

Deploy script changes

Undeploy script

Delete script

Set form script Execute As User

Run schedule script test code

Run schedule script code

Cancel schedule script queued
runs

View script parameters

View and modify script
parameters

Set script parameter value

View solutions

Create solution

Upload solution

Download solution

Apply solution

Delete solution

Scripting and OpenAir Mobile
OpenAir Mobile 4.0 or later version supports:

■ All form scripts associated with the expense report and receipt entity forms.
■ "Before approval" and "After approval" scripts associated with the timesheet entity form.

Note: “On submit,” “Before save,” or “After save” scripts associated with the timesheet entity
form are not supported.

For an example of script that is executed both in OpenAir and OpenAir Mobile, see

User Scripting

Scripting and NetSuite Integration 15

Scripting and NetSuite Integration
You can use the following user scripting functions to trigger an integration run:

■ NSOA.NSConnector.integrateAllNow() — Use this function to import and export records in bulk from
your scheduled scripts. The run will include all integration workflows that are active at the time the run
is triggered. See NSOA.NSConnector.integrateAllNow().

■ NSOA.NSConnector.integrateWorkflowGroup(name) — Use this function to import and export records
in bulk from your scheduled scripts. The run will include only integration workflows in the workflow
group specified by name. See NSOA.NSConnector.integrateWorkflowGroup(name).

■ NSOA.NSConnector.integrateRecord() — Use this function to export a single OpenAir record from your
form scripts. See NSOA.NSConnector.integrateRecord().

If you are using the NetSuite <> OpenAir integration, and depending on the integration configuration,
NetSuite Connector may use software logic associated with the Project form when importing project
records from NetSuite to OpenAir. In this case, form scripts associated with the Project form and
triggered by an “On submit”, “Before save”, or “After save” event will run for each imported project record.
This will impact the performance of your integration runs and may result in errors related to scripting
governance limits. For more information about configuration options that result in the integration
triggering form scripts, see NetSuite Integration.

User Scripting

https://app.openair.com/download/NetSuiteIntegration.pdf

User Scripting 16

User Scripting

Scripting Center

The Scripting Center is accessed from Administration > Scripting Center and gives administrators
complete control over all script deployments and development activities from a central location.

The Scripting Center has five tabs:

■ Form — See Creating Form Scripts.
■ Scheduled — See Creating Scheduled Scripts.
■ Library — See Creating Library Scripts.
■ Parameters — See Creating Parameters.
■ Solutions — See Creating Solutions.

From the Scripting Center you can launch the Scripting Studio by clicking on a script link.

Scripts are moved through the Scripting Workflow from the Status menu.

Note: Customers that choose not to use the Scripting Studio in favor or another editor are still
fully supported from the Scripting Center.

You can view any log messages the script has generated using the “View Log” link, see Logs.

User Scripting

Scripting Center 17

You can clear all log entries for a specific script from the Scripting Center using the Clear log option in
the Status dropdown list. See Clear Log Entries for a Specific Script.

■ Script — This is the script to run on the event, click to edit the script in the Scripting Studio.

■ Status — Indicates the state of the script in the Scripting Workflow.

■ Entrance Function — This is the entrance function to call in the script, see Entrance Function.

■ Event — This is the event that will trigger the script to run, see Events.

■ Form name — This is the form that will trigger the script, see Creating Form Scripts.

Scheduled Queue Status

The Started and Duration [sec] columns on the Scripting Center > Scheduled tab allows administrators
to monitor the processing of scheduled scripts in the queue. Refresh your screen to see the progress. The
Started and Duration [sec] columns are cleared when the script completes.

Dedicated Scripting Workspace

OpenAir incorporates a dedicated scripting workspace used exclusively for scripting. The dedicated
scripting workspace is hidden in OpenAir. Files in the dedicated scripting workspace can only be altered
through the Scripting Center. This feature provides additional security for the maintenance of scripts. It
is not possible to accidentally delete an active script or to create scripts with the same name. This feature
also simplifies the user interface as you do not need to specify a workspace to store the script.

Manage libraries

User Scripting

Scripting Center 18

You can specify the libraries a script references by selecting Manage libraries from the Scripting Center
Status menu. This performs the same function as selecting libraries in the Scripting Studio Tools and
Settings and is provided for developer using an external editor.

Note: You can only manage the libraries of ”In testing” and “Active: revising” scripts.

Important: You cannot select an ”Inactive” library and you cannot deploy a script that is
referencing a library that has not been deployed.

Manage parameters

You can specify the parameters a script uses by selecting Manage parameters from the Scripting Center
Status menu. This performs the same function as selecting parameters in the Script Parameters section
of the Scripting Studio and is provided for developer using an external editor.

Note: You can only manage the parameters of ”In testing” and “Active: revising” scripts.

View history

The script deployment history is available by selecting View history from the Scripting Center Status
menu. From this form you can browse through each revision of deployed code and download a selected
document revision. For each version of a deployed script (document revision), the Script deployment
history page shows:

■ The deployed script source code

■ Deployment comments

■ When the script was deployed and by whom. The date and time is given as Eastern Time (UTC – 5).

User Scripting

Scripting Center 19

Important: A new history entry is only created when you Deploy a script. A new history entry is
not created every time you SAVE your script changes.

User Scripting

Scripting Center 20

Scripting Workflow

Note: * Edit is actioned by clicking the script link and saving from the Scripting Studio

A color coded status indicator shows the position of the script in the scripting workflow:

■ Inactive scripts are not triggered at all.

■ In testing scripts are only triggered by the user selected to test the code.

■ Active scripts are triggered for all users.

■ Active: revising scripts have separate deployed code and test code. The test code is triggered by the
user selected to test the code and the deployed code is triggered by all other users.

Depending on the scripts status in the workflow a list of options are available by clicking on the status.

Status Actions

■ Test — Prompts for test settings and on SAVE moves the script to In testing.

■ Delete — Prompts for confirmation and on OK deletes the script code and all associated history.

User Scripting

Scripting Center 21

■ View history — see View history.

■ Click the script link to make changes in the Scripting Studio. On SAVE the script moves to In
testing.

■ Deploy — Prompts for confirmation and on SAVE moves the script to Active.

■ Disable testing — Prompts for confirmation and on OK moves the script to In active.

■ Manage libraries — see Manage libraries.

■ Manage parameters — see Manage parameters.

■ View history — see View history.

■ Export solution — see Creating Solutions.

■ Click the script link to make changes in the Scripting Studio. On SAVE the status in not changed.

■ Revise — Prompts for a new JS file with the required content and then launches the Scripting
Studio with this new content. On SAVE the script is moved to Active: revising.

■ Undeploy — Prompts for confirmation and on OK moves the script to In testing.

■ View history — see View history.

■ Create solution — see Creating Solutions.

■ Click the script link to make changes in the Scripting Studio. On SAVE the script moves to Active:
revising.

■ Deploy changes — Prompts for confirmation and on SAVE moves the script to Active.

■ Discard changes — Prompts for confirmation and on OK moves the script to Active ignoring any
changes made.

■ Manage libraries — see Manage libraries.

■ Manage parameters — see Manage parameters.

■ Undeploy — Prompts for confirmation and on OK moves the script to In testing.

■ View history — see View history.

■ Create solution — see Creating Solutions.

■ Click the script link to make changes in the Scripting Studio. On SAVE the script moves to Active:
revising.

Creating Form Scripts
Form scripts are created from the Create Button. You need to specify a unique filename for the script in
the dedicated scripting workspace. You can optionally select a document that already has the script you
need otherwise a blank script file will be created. If you specify a document to upload then a new script
file is created from the specified file and the original file left untouched.

Note: An individual script can only be associated with one form. The same script cannot be
triggered by two different forms or even form events. An individual form may trigger as many
scripts as necessary.

To create a form script:

1. Go to Administration > Scripting Center > Form. The list for form scripts appears.

2. Click the Create button.

User Scripting

Scripting Center 22

3. Click the type of form script you want to create under “New”. The “New document” dialog appears.

4. Type a filename for the script into the “Filename” dialog.

5. If you want to import an already written form script, click Choose File and select the script’s file.

6. Click Save. The list for form scripts appears.

7. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

8. Type the script into the editor and then fill out fields in the Scripting Studio Tools and Settings:

a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.

b. Select any libraries referenced by this script.

c. Select whether the script is executed On Submit, Before save, or After save.

d. Select the Entrance function, the name of your function to run in the editor, see Entrance
Function.

e. Use the Code revision comments to comment the script changes made.

f. Click SAVE.

Note: The act of saving a script in the ”Inactive” state will move the script to the ”In testing”
state, see Scripting Workflow.

After a script is created, you can edit the script by clicking on the script link, move the script through the
Scripting Workflow, or view any log messages the script has generated using the “View Log” link, see
Testing Form Scripts.

Tip: To reduce the errors in your scripts, see Scripting Best Practices.

Scripts need to be carefully tested before being deployed to production. See Testing Form Scripts and
Scripting Workflow for details.

For more details see:

■ Scripting Studio — Details on the OpenAir IDE.

■ NSOA Functions — Details on the functions provided to access OpenAir.

■ JavaScript — How to use the JavaScript language.

■ Code Samples — OpenAir user script examples.

■ Real World Use Cases — Larger examples provided to assist you in developing your own scripts.

User Scripting

Scripting Center 23

Testing Form Scripts
There are three types of errors you need to remove from your scripts.

■ Syntax errors — These errors can be caught before your script is executed. Syntax errors are
displayed in the Editor.

For example:

OpenAir checks scripts for correct syntax before allowing them to be deployed. An error is displayed if
you attempt to deploy a script with syntax errors.

Note: This error is caused because Var had been typed in place of var, JavaScript is case
sensitive. See Variables for more details.

■ Runtime errors — These errors occur during run time. OpenAir report runtime errors in the log.

Click on the View Log link to see the log messages. See also Reporting.

This error was caused because the script attempted to call a method that doesn’t exist, that is,
NSOA.form.getLabel2 does not exist.

function test() {
 var value = NSOA.form.getValue('budget_time');
 var label = NSOA.form.getLabel2('budget_time');
}

In JavaScript missing methods can only be detected at runtime.

Tip: If you load the script into the Editor you can quickly find the line number reported in the
log.

■ Logic errors — These errors are the most difficult type to track down. They are not the result of a
syntax or runtime error. Instead, they occur when you make a mistake in the logic that drives your
script and you do not get the result you expected.

User Scripting

Scripting Center 24

Tip: You can use the NSOA.meta.alert(message) function to log debugging information.

Important: Test scripts thoroughly in a Sandbox account before deploying to a Production
account.

See also Testing and Debugging.

Deploying Form Scripts

To deploy a form script:

1. Go to Administration > Scripting Center > Form. The list for form scripts appears.

2. In the status column, click the drop-down list for the form script you want to deploy and select
“Deploy”. A deploy script dialog appears.

3. Add notes for the script deployment (optional).

4. Select an employee to execute the script.

Note: Form scripts cannot be executed as an Administrator.

5. Click Save. A message will confirm that the script was deployed, and the list for the selected script
type appears.

Execute as User when Deploying Form Scripts

When deploying a script, you must select a user to execute the deployment. This user acts as a proxy, and
is needed when one user does not have the access permissions a script needs to run successfully.

The “Execute as User” feature is not intended as a replacement for using
NSOA.wsapi.disableFilterSet([flag]).

Administrators will not appear in the “Execute as User” list. Form scripts are explicitly prevented from
being deployed by Administrators.

User Scripting

Scripting Center 25

Tip: Create a dedicated user with the minimum necessary permissions to execute the script for
the “Select user to execute script deployment” feature.

Creating Scheduled Scripts
Scheduled Scripts are accessed from the Scheduled tab of the Scripting Center. See Scripting Switches to
enable this feature.

Scheduled scripts are created in a similar same way to form scripts and follow the same Scripting
Workflow. Notice that scheduled scripts have additional menu options available from the Status menu:

■ Run script deployment — Prompts for confirmation and on OK will add a one-time schedule event to
the platform script deployment job queue.

■ Cancel queued runs — Prompts for confirmation and on OK will cancel any jobs queued to run for
this script.

Scheduled scripts are not associated with a form and cannot access the NSOA.form functions.

To create a scheduled script:

1. Sign in as an Administrator and go to the Scheduled tab on the Scripting Center.

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new scheduled script from the Create Button.

User Scripting

Scripting Center 26

You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified
file and the original file left untouched.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

4. Type the script into the editor and then fill out fields in the Scripting Studio Tools and Settings:

a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.

b. Select any libraries referenced by this script.

c. Event is fixed as ‘Scheduled’.

d. Select the Entrance function, the name of your function to run in the editor, see Entrance
Function.

e. Use the Code revision comments to comment the script changes made.

f. Click SAVE.

Note: The act of saving a script in the ”Inactive” state will move the script to the ”In testing”
state, see Scripting Workflow.

Testing Scheduled Scripts
Scheduled scripts can be run from the Run test code menu option form the Status menu.

Important: By default scheduled triggers are disabled on sandboxes. If you need to test
scheduled triggers in your sandbox account, create a support case in SuiteAnswers and request
the run_schedule_script trigger to be enabled for your sandbox account.

There are three types of errors you need to remove from your scripts.

User Scripting

Scripting Center 27

■ Syntax errors — These errors can be caught before your script is executed. Syntax errors are
displayed in the Editor.

For example:

OpenAir checks scripts for correct syntax before allowing them to be deployed. An error is displayed if
you attempt to deploy a script with syntax errors.

Note: This error is caused because Var had been typed in place of var, JavaScript is case
sensitive. See Variables for more details.

■ Runtime errors — These errors occur during run time. OpenAir report runtime errors in the log.

Click on the View Log link to see the log messages. See also Reporting.

This error was caused because the script attempted to call a method that doesn’t exist, that is,
NSOA.form.getLabel2 does not exist.

function test() {
 var value = NSOA.form.getValue('budget_time');
 var label = NSOA.form.getLabel2('budget_time');
}

In JavaScript missing methods can only be detected at runtime.

User Scripting

Scripting Center 28

Tip: If you load the script into the Editor you can quickly find the line number reported in the
log.

■ Logic errors — These errors are the most difficult type to track down. They are not the result of a
syntax or runtime error. Instead, they occur when you make a mistake in the logic that drives your
script and you do not get the result you expected.

Tip: You can use the NSOA.meta.alert(message) function to log debugging information.

Important: Test scripts thoroughly in a Sandbox account before deploying to a Production
account.

See also Testing and Debugging.

Deploying Scheduled Scripts
To deploy a scheduled script:

1. To deploy a scheduled script, select the Deploy option from the Status menu, see Scripting
Workflow.
Scheduled scripts are executed within the context of a user. You need to specify the user under
which the script is to be executed when you deploy the script.
As of the April 16, 2016 release, you can select a non-administrator user who acts as a proxy
to execute a script deployment. This is especially useful when a user does not have the access
permissions a script needs to run successfully. With this feature, you need only assign the
minimum-necessary permissions.

User Scripting

Scripting Center 29

Scripts can be scheduled to run at any interval:

Example The script will run...

1st of the month at 12am 00 On the first day of every month at 00:00

Monday at 11am 00 Every Monday at 11:00

Monday at 11am 15 Every Monday at 11:15

Monday at 11am Every 15th minute Every Monday at 11:15, 11:30, and 11:45

Monday at Every hour 00 Every Monday at the top of each hour, for example 00:00, 01:00, ... ,
22:00, 23:00

Every day 10am 30 Every day at 10:30

Scheduled Scripts and Scheduled Queue Status
The Started and Duration [sec] columns on the Scripting Center > Scheduled tab allows administrators
to monitor the processing of scheduled scripts in the queue. Refresh your screen to see the progress. The
Started and Duration [sec] columns are cleared when the script completes. For more information about
scheduled scripts, see User Scripting and Creating Scheduled Scripts.

Creating Library Scripts
Library Scripts are accessed from the Library tab of the Scripting Center. Libraries can be called from
both form and scheduled scripts. One library can call another library but circular relationships are not
allowed. Libraries are automatically available when form and / or scheduled scripts are enabled, see
Scripting Switches.

Library scripts are created in a similar way to form and scheduled scripts and follow the same Scripting
Workflow.

Library scripts are not associated with a form or event and can only access NSOA.form functions if called
from a form script.

References to libraries can be set from the Scripting Center Manage libraries or from the Scripting Studio
Scripting Studio Tools and Settings.

To create a library script:

1. Sign in as an Administrator and go to the Library tab on the Scripting Center.

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new library script from the Create Button.

User Scripting

Scripting Center 30

You need to specify a unique filename for the script in the Dedicated Scripting Workspace. You can
optionally select a document that already has the script you need otherwise an empty script file will
be created. If you specify a document to upload then a new script file is created from the specified
file and the original file left untouched.

3. Click on the Script link in the Scripting Center to open the script in the Scripting Studio.

4. Type the script into the editor.

Create functions in the same way as for form and scheduled script and then use exports to make
the function available. You have the option to change the name of the function that is exported.

Important: Functions created in a library are private to that library by default. You need
to use the exports keyword to make the function available to scripts calling the library.

Tip: If you don’t see a function you are expecting in the Functions Explorer check that the
function has been exported and that the library does not contain any syntax errors.

5. Fill out the fields in the Scripting Studio Tools and Settings:

a. Select the user that the script will run for ‘In testing’ state, see Testing and Debugging.

b. Select any libraries referenced by this library.

c. Use the Code revision comments to comment the script changes made.

d. Click SAVE.

User Scripting

Scripting Center 31

Note: The act of saving a script in the ”Inactive” state will move the script to the ”In testing”
state, see Scripting Workflow.

Important: You cannot deploy a script that references a library that is not deployed.

To use a library script:

1. Create a form or scheduled script, see Creating Form Scripts.

2. Reference the library either from the Scripting Center Manage libraries or from the Scripting Studio
Tools and Settings.

3. Use the library in the script.

a. Use the require keyword to create a variable referencing the library.

b. Use methods of the variable to access the functions exported by the library, see Objects.

Creating Parameters
Script Parameters are accessed from the Parameters tab of the Scripting Center. Parameters can be
used by form, scheduled, and library scripts. Parameters are automatically available when form and / or
scheduled scripts are enabled, see Scripting Switches.

Parameters have account wide scope, changing the value for a parameter will affect all scripts using that
parameter.

References to parameters can be set from the Scripting Center Manage parameters or from the Scripting
Studio Script Parameters section.

To create a parameter:

1. Sign in as an Administrator and go to the Parameters tab on the Scripting Center.

User Scripting

Scripting Center 32

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Create a new parameter from the Create Button.

Create a parameter in the same way as you would create a custom field.

3. You can manage all the parameters from the Parameters tab in the Scripting Center.

a. Click on the Name of a parameter to edit its definition.

Note: You cannot delete a parameter or change the name of a parameter that is
Referenced by a script.

b. Click on Set to change the value selected for the parameter.

Important: A parameter can be referenced by more than one script. Changing
the value affects all scripts referencing the parameter. Form, scheduled, and library
scripts can reference parameters.

c. Click on the Referenced by script to open the script in the Scripting Studio.

User Scripting

Scripting Center 33

To use a parameter:

1. First create any parameters you need, see To create a parameter:.
2. Reference the parameter either from the Scripting Center Manage parameters or from the

Scripting Studio Script Parameters.
3. You can use the NSOA.context.getParameter(name) or NSOA.context.getAllParameters() functions

to read the parameter values in your script.

4. Administrators can change the script values from the calling script in the Scripting Center.

Click on the parameter name to change the value.

Important: A parameter can be referenced by more than one script. Changing the
value affects all scripts referencing the parameter. Form, scheduled, and library scripts can
reference parameters.

Creating Solutions

User Scripting

Scripting Center 34

Platform solutions are accessed from the Solutions tab of the Scripting Center. Solutions can be created
for form, scheduled, and library scripts. Solutions can also be used to create custom fields, script libraries,
and script parameters. Solutions are automatically available when form and / or scheduled scripts are
enabled, see Scripting Switches.

Solutions are stored in XML files so you can read, transfer, archive, and compare them. Solutions contain
a version tag to allow OpenAir to check that the solution file is compatible before applying.

A log is created when a solution is applied to show exactly what the solution created and to record any
errors.

Tip: Add the “Solutions” column on the “Form” or “Scheduled” screens to see which scripts are
contained in a solution.

Solution Status
A solution can be in one of three states:

■ Not applied — The solution has been uploaded.

■ Applied — The solution has been successfully applied.

■ Failed — The solution was applied but encountered errors.

Solutions create a log when they are applied to an account. For ‘Applied’ solutions you can view the log to
see which objects (scripts or parameters) the solution created. For ‘Failed’ solutions you can also see the
errors that occurred when the solution was applied.

Solution Actions

A solution can have the following actions:

■ Apply — Creates all objects specified in the solution and creates a log file. If successful the solution
status changes to ‘Applied’. If unsuccessful an error message is displayed and the solution status
changes to ‘Failed’. See To apply a platform solution:.

Note: This action is only available for solutions with the ‘Not applied’ status.

■ Delete — Deletes the solution with all its history and logs.

Important: This does not delete any objects created by the solution.

■ Download — Downloads the solution XML file that was uploaded.

To create a solution:

1. Go to Administration > Scripting Center > Solutions.

User Scripting

Scripting Center 35

2. Click the global Create button and select Create solution.

3. Name the solution and give it a title and description. Select the scripts to include in the solution
and select any additional parameters or custom fields. Solutions are built from existing active
scripts.

4. Click the > Create link under Documentation URL if you want to link to documentation describing
the solution. After the link is created, click the link in the Documentation URL column in the
Solutions tab to open the document.

5. Select which scripts (including Library scripts) the solution will run from the Scripts selection list.

6. Select which custom fields the solution will create from the Custom fields selection list.

7. Select which script parameters the solution will create from the Script parameters selection list.

8. Click Save.

Note: You only need to select additional custom fields and parameters. When you select a
script, the solution will automatically pull in the script’s required libraries and parameters. OpenAir
ignores duplicate selections.

To create a platform solution from a single script:

1. Sign in as an Administrator and go to the Scripting Center.

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Go to the Form, Scheduled, or Library script you want to create the solution for.

3. Select the Export solution option from the script status menu.

Note: You can create a solution for any script that is not ‘Inactive’. See Scripting Workflow.

4. Enter the name, title, and description for the solution file and SAVE.

Tip: The solution will contain all library scripts and parameters referenced by the script. To create
a solution without a certain reference, first remove the reference from the script and then create
the solution.

To apply a platform solution:

1. Sign in as an Administrator and go to the Solutions tab on the Scripting Center.

Note: Make sure you have the necessary switches enabled, see Scripting Switches.

2. Select Upload solution from the Create Button.

User Scripting

Scripting Center 36

Note: You are not allowed to upload an invalid solution file.

3. Select the Apply option from the status menu.

Accessing Terminology
Remember, all terminology can be customized to meet the unique needs of your company, see Script
Terminology. You can allow for changes in terminology by using terminology phrases in your script.

A terminology phrase takes the form "%project%" which is the internal ID for the term surrounded by ‘%’
characters. Use the Terminology section in the Scripting Studio to lookup the internal identifiers to use.

Notice that there are two forms for a term. For example, project and A_project. The second form will
return the correct indefinite article (a/an) required for the term.

Tip: Singular/plural and capitalization are respected in parsing the terminology.

You can access terminology with the following functions:

■ NSOA.context.getAllTerms()
■ NSOA.context.getTerm(termid)
■ NSOA.context.parseTerminology(message)

Terminology phrases are directly parsed in log and error messages:

■ NSOA.form.error(field, message)
■ NSOA.meta.alert(message)
■ NSOA.meta.log(severity, message)

To use terminology in scripts:

User Scripting

Scripting Center 37

1. Administrator set account terminology from Administration > Global Settings > Display > Interface:
Terminology.

Note: You only need to enter the replacement term in its singular form. OpenAir
automatically generates the plural term where applicable.

2. Scripts can look up a term using the NSOA.context.getTerm(termid) function
and can use "%TERMID%" phrases in strings and parse them with the
NSOA.context.parseTerminology(message), NSOA.form.error(field, message),
NSOA.meta.alert(message), and NSOA.meta.log(severity, message) functions.

var proj_term = NSOA.context.getTerm("Projects");
// proj_term = "Jobs"

var msg1 = NSOA.context.parseTerminology("%Project% saved!");
// msg1 = "Job saved!"

var msg2 = NSOA.context.parseTerminology("Notes attached to %project%.");
// msg2 = "Notes attached to job."

// Automatic terminology parsing
NSOA.form.error("", "%Project% saved!");
NSOA.meta.alert("%Project% saved!");
NSOA.meta.log("Info", "%Project% saved!");

Note: Singular/plural and capitalization are respected in parsing the terminology.

3. Users see the messages displayed with the correct account terminology.

Scripting Studio

The Scripting Studio is accessed by clicking on a script link in the Scripting Center.

User Scripting

Scripting Studio 38

From the Scripting Studio a script developer can quickly create scripts with a full screen editor supported
by intuitive tools with drag-and-drop:

■ Scripting Studio Tools and Settings

■ SOAP Explorer

■ Functions Explorer

■ OData Explorer

■ Script Parameters

■ Terminology

■ Form Schema

■ Testing and Debugging

■ Editor

You can view any log messages the script has generated by clicking on the View Log link at the top—left
of the editor, see also Testing Form Scripts

Scripting Studio Tools and Settings

User Scripting

Scripting Studio 39

■ Association — An individual script can only be associated with one form and this is set when the
script is created. The same script cannot be triggered by two different forms or even form events. An
individual form may trigger as many scripts as necessary.

■ Employee — This is the user that will test the script, see Testing and Debugging for more details.

■ References — Select the libraries that are used by this script.

■ Event — This is the event that will trigger the script to run, see Events.

■ Entrance function — This is the name of the function to run, see Entrance Function.

■ Code revision comments — These are optional notes that the developer can add.

SOAP Explorer

From the SOAP explorer you can browse through the SOAP API objects and attributes, and view examples
of usage. Select a SOAP object, then select an attribute to view a code example using information for that
object and attribute.

You can drag and drop code examples directly into the editor. See also the Auto List & Complete feature.

User Scripting

Scripting Studio 40

Functions Explorer

The functions explorer acts as an online cheat sheet showing the syntax for all the available NSOA
functions and for any selected library. Select a function to view an example of usage.

You can drag and drop code examples directly into the editor. See also the Auto List & Complete feature.

OData Explorer
Use the OData explorer to browse your published OpenAir reports and lists, and the columns available
in these resources. Select the resource type (published list or published report), the resource, and the
column, to view a code example using information in that resource and column. Select and drag the code
example into the editor pane to use the snippet in your script.

The OData explorer shows both the OData resource ID and the saved list or saved report title. This helps
you identify and reference the correct OData resource by ID directly from the scripting studio.

See also Business Intelligence Connector and the following user scripting functions:

■ For reports: NSOA.report.data(reportId,optionalParameters) and NSOA.report.list().

User Scripting

Scripting Studio 41

■ For lists: NSOA.listview.data(listviewId) and NSOA.listview.list()

Note: This functionality is available only if the Business Intelligence Connector feature is enabled
for your account. The Business Intelligence Connector feature is a licensed add-on. To enable this
feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Script Parameters
From the script parameters section you can see all the parameters available in the account and select
parameters used in the script.

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

Scripting Studio 42

Click on a selected parameter to see an example. You can drag and drop code examples directly into the
editor.

See also Creating Parameters.

Note: Referencing a parameter prevents the parameter from being deleted or changed in a way
that will affect the script. See also the Auto List & Complete feature.

Terminology
From the terminology section you can browse through all the terminology available in OpenAir and see
the terms set for the current account.

Select a term to see an example. You can drag and drop code examples directly into the editor.

See Accessing Terminology for details.

Form Schema
The Form schema allows you to explore the form you are creating the script for. This provides vital
information as you need to know the names of the fields and the structure of the objects so you can
reference them in your scripts.

The Fields drop-down list at the top gives a complete list of the available fields on the form. You can select
between View by param or View by label by clicking on the link.

■ If View by label is selected (default), each entry in the drop-down list has the following format:

Label [Field] <Data Type>

User Scripting

Scripting Studio 43

□ Budget (hours) is the label the user sees on the form.

□ Budget_time is the field name you need to use when calling NSOA Functions.

□ Number is the internal data type JavaScript will use for a variable created for this field. See
Dynamic Data Types.

■ If View by param is selected, each entry in the drop-down list has the following format:

Field [Label] <Data Type>

□ Budget_time is the field name you need to use when calling NSOA Functions.

□ Budget (hours) is the label the user sees on the form.

□ Number is the internal data type JavaScript will use for a variable created for this field. See
Dynamic Data Types.

Tip: If you have added a new custom field and this is not listed in the Form schema, open the
form with the new custom field to refresh the custom field list, and then open the Scripting Studio
again. See Custom Fields for more details.

Note: When editing a form script associated with the Receipt form, the hidden fields Receipt
subtype [subtype] <String> and Envelope [envelope_id] <Number> are available in addition to
the fields visible on the form:

■ The subtype field indicates whether the receipt is a Mileage receipt , a regular Receipt or
Foreign currency receipt. The receipt subtype is determined by the type of the associated
expense item.

□ The function NSOA.form.getValue(‘subtype’) will return a string with the value ‘M’ if it is a
Mileage receipt, and ‘R’ otherwise (regular Receipt or Foreign currency receipt.

□ The functions NSOA.form.getOldRecord() and NSOA.form.getNewRecord() will return an
object of type oaTicket with the associated expense item referenced by ID oaTicket.item_id.
You can also use the item type field oaItem.type to determine the subtype of a receipt.

■ The envelope_id field is the ID of the envelope the receipt is associated to.

□ The function NSOA.form.getValue(‘envelope_id’) will return the envelope ID.

□ The functions NSOA.form.getOldRecord() and NSOA.form.getNewRecord() will return an
object of type oaTicket with the associated envelope referenced by ID oaTicket.envelopeid.

When you select a field from the drop down list the Data structure/types & Examples area is filled.

The Data structure/types & Examples area has two text fields.

User Scripting

Scripting Studio 44

The text field on the left shows the data type or data structure (if the data type is an object) for the field.
See Object Fields.

The text field on the right shows correctly formatted code samples using the NSOA functions for the
selected field. You can directly copy and paste these samples into your script. See Object Fields.

Object Fields
Fields with the Object type expose properties that allow you to access their internal data structure.

For example, consider the Loaded hourly cost form section.

All these fields are exposed through one loaded_cost field <Object>.

Notice the way the Loaded hourly cost fields map to the data structure you need for your script.

User Scripting

Scripting Studio 45

The data structure has three blocks that correspond to the three rows of fields in Loaded hourly cost
form section.

Getting a value from an object field is a two step process:

1. First you need to get the object variable for the field:

var loaded_cost_obj = NSOA.form.getValue("loaded_cost");

2. Then you can use the object variable to get the value:

var value = loaded_cost_obj[0].cost_0;

You can combine these two steps into one line:

var value = NSOA.form.getValue("loaded_cost")[0].cost_0;

Take a closer look at the syntax: var value = loaded_cost_obj[0].cost_0.

Each row in the data structure is accessed in the same way as an array, that is, loaded_cost_obj[0] is this
first row. Each column of the row is accessed by the field name that is loaded_cost_obj[0].cost_0 is the
“Primary loaded cost” for the first row.

Note: Remember Arrays are zero-based.

Take a closer look at the syntax: var value = NSOA.form.getValue("loaded_cost")[0].cost_0

Notice this is NSOA.form.getValue("loaded_cost") with [0].cost_0 appended.

This is referencing "loaded_cost" in the same way as a simple field and then using [0].cost_0 to view the
required property of the returned object.

Testing and Debugging

From the Scripting Studio Tools and Settings you must specify a test user. You can determine if your script
is running in Test mode within your script by calling NSOA.context.isTestMode().

Tip: Calls to NSOA.meta.log(severity, message) with a “debug” or “trace” severity are only
executed in Test mode and do not consume Scripting Governance units but are limited to a
maximum of 1000 per script.

If you are seeing a problem that is only happening with a particular user you can select that user to be the
one that the test code runs for.

User Scripting

Scripting Studio 46

To set a test user

1. Select the user from the drop-down list.

2. Click on SAVE.

Note: The named user will also be able to access error debug detail.

For more information about Testing & Debugging, see Testing Form Scripts.

Editor

Editor Features:

■ Auto List & Complete — Type ‘.’ after “NSOA” and the Auto List window appears showing all the
available options, see Auto List & Complete.

■ Color coding — Keywords, variables, literals, comments, etc. are highlighted in different colors to aid
correct coding.

■ Line numbers — Line numbers are listed in the left margin to assist in development and debugging.

■ Line highlighting — The line the cursor is on is highlighted to assist in editing the code.

■ Syntax checking — Errors and warning are displayed as you type into the editor.

Note: Point to the error icon to display the error message.

■ Bracket completion — If you type an opening bracket the matching closing bracket is automatically
created.

■ Matching brackets If you place your cursor next to a bracket then the matching brackets are
highlighted

■ Full-screen — Click into the editor and press <Ctrl> + F11 to full-screen the script editor

User Scripting

Scripting Studio 47

While working in full-screen mode you can still continue using the Auto List & Complete feature.

Press Esc to exit full-screen mode and save your changes in the usual way.

■ Search and Replace Functions — Search through scripts using simple or regexp search expressions.
Use the following key shortcuts for searches within the Script Editor:

□ Start a Search — Ctrl+F / Cmd+F

□ Find Next — Ctrl+G / Cmd+G

□ Find Previous — Shift+Ctrl+G / Shift+Cmd+G

□ Replace — Shift+Ctrl+F / Cmd+Option+F

□ Replace All — Shift+Ctrl+R / Shift+Cmd+Option+F

These shortcuts can also be found in the Tips menu from within the Script editor.

You can use regexp to search for more complex strings. For example, entering /envelope|ticket/ in
the search field searches for both “envelope” and “ticket”.

After a search dialog is opened, press Escape to exit it without searching.

■ Jump to Line Functions — You can move through your scripts quickly by entering Jump to Line
functions. Press Alt+G to open the Jump to Line dialog. Then, enter the script line you want to move
the cursor to. The following input formats are accepted:

□ Line — enter the line to move the cursor to. For example, entering 25 in the Jump to Line field
moves the cursor to line 25

□ Line:column — enter both the line and column separated by a colon. For example, entering 25:9
moves the cursor to line 25, column 9.

□ +/-Line — enter how many lines forward or backward to move your cursor. For example, if the
cursor is at line 5, and you enter +5 into the Jump to Line field, the cursor moves to line 10.

□ Scroll% — enter a percent of the document to move the cursor to. For example, entering 50%
in the Jump to Line field moves the cursor 50%, to the middle of the script. Add + or _ to the

User Scripting

Scripting Studio 48

percentage to move forward or backward. For example, if the cursor is at the end of the script, —
50% moves the cursor backward to the middle of the script.

After the Jump to Line dialog is opened, press Esc to exit it without moving the cursor.

Auto List & Complete
When a user types the text “NSOA” into the Scripting Studio editor and then hits the ‘.’ character the Auto
List window appears showing all the available options:

The user has the following options:

■ Click on the required item with the mouse and double-click to select it.
■ Use the up and down arrow keys to select the required item and then hit ‘Enter’ to select it.
■ Type the first character of the required item (for example ‘m’) to highlight it and then hit ‘Enter’ to

select it. If more than one item starts with the same letter then the first item will be highlighted and
the list of options filtered.

■ Hit ‘Esc’ to close the Auto List window and type as normal. Clicking outside of the editor window will
also close the Auto List window.

Tip: Press <Ctrl> + <Space> to show the Auto List window at any point in the editor.

On selecting an item from the Auto List window, the value will be copied into the editor and typing
continues after the inserted value.

Tip: Auto List & Complete is enabled by default. You can change your settings from User Menu
> Personal settings.

Scripting Studio Options
The scripting studio can be customized with various display options. To customize your scripting studio
and editor, go to User Menu > Personal settings > Display Options > Scripting Studio Options. From here,
you can customize the following:

■ Editor Theme — choose from a variety of color schemes for the script editor
■ Indent Unit — select whether an indent unit is a space or a tab in the script editor
■ Font Size — select the size of the text font in the script editor
■ Tab Size — set how many spaces a tab uses in the script editor

User Scripting

Scripting Studio 49

Entrance Function

An Entrance function serves as the starting point in your script. For more on functions see Functions.

The Entrance function is associated with a form event in the Scripting Studio Tools and Settings options,
see Events.

Note: The Entrance function field value is the name of the function without parenthesis (or
parameter, if used).

Entrance Function Type Parameter
The entrance function can optionally take a type parameter which will be passed one of:

■ ‘new’ — this is passed when saving a new form.

Note: This applies to New and New, from another actions.

■ ‘edit’ — this is passed when updating an existing form.

Note: This also applies when creating a clone.

■ ‘approve_request’ — this is passed when a record is submitted for approval.

■ ‘approve’ — this is passed when a record is approved.

■ ‘reject’ — this is passed when a record is rejected.

User Scripting

Entrance Function 50

■ ‘unapprove’ — this is passed when a record is unapproved, and is supported by bookings, booking
requests, expense reports, invoices, purchase orders, purchase requests, schedule requests, and
timesheets.

Note: To enable the Unapprove type, contact OpenAir Customer Support and ask them
to enable the “Enable user scripts to use an unapproval context in the after approval event”
switch.

The type value will be the same regardless of the form Event. For example, if you call your entrance
function on “After save” when creating a new form you will still be passed a type value of ‘new’.

Events
Scripts are triggered by events. The required Event is specified in the Scripting Studio Tools and Settings
options.

You should select the Event according to the purpose of the Entrance Function, see the diagram below.

User Scripting

Events 51

Note: Only forms that can take part in an approval process receive approval events.

■ On submit — Always executed. This is the first event that occurs when the user click SAVE.

■ Before save — Always executed. This is where you should check that any special conditions on the
form are valid and raise form errors if required by calling NSOA.form.error(field, message).

Note: The record does not exist in the database at this stage so you can’t call wsapi functions
to change any of the record values.

■ After save — Executed if no form errors are raised. This is where you should call wsapi functions to
modify the data held on this or related records.

■ Before approval — This is where you can perform additional checks and prevent a record from being
sent for approval by calling NSOA.form.error(field, message).

■ After approval — This is where you can perform additional actions following a record approval or
reject.

User Scripting

Events 52

Note: The OpenAir mobile app does not support “On submit,” “Before save,” or “After save”
scripts associated with the timesheet entity form.

OpenAir Mobile 4.0 or later version supports:

■ All form scripts associated with the expense report and receipt entity forms.

■ "Before approval" and "After approval" scripts associated with the timesheet entity form.

For an example of script that is executed both in OpenAir and OpenAir Mobile, see

Important: Form scripts may be triggered by an event associated with user interaction —
when a user clicks Save, for example.

Form scripts can also be triggered by an event associated with a process utilizing the form
software logic — when importing project records from NetSuite using OpenAir NetSuite
Connector, for example, depending on the integration configuration. For more information, see
Scripting and NetSuite Integration.

Scripting Governance
To prevent scripts from consuming excessive resources or running out of control, limitations are placed
on scripts:

■ Time Limit — If a form script runs for more than 5 seconds (not including wsapi call time) it is
automatically terminated with a form error. If a request (all scripts triggered by the same form save)
uses more than 60 seconds of wsapi time it will also be automatically terminated.

Note: Scheduled scripts are allowed 1 hour of JS runtime and 1 hour of wsapi.

■ Units Limit — NSOA functions are assigned a unit value. Each time an NSOA function is called its unit
value is consumed. A script is allowed to consume a maximum of 1000 units with each run before it is
automatically terminated with a form error. You can determine how many units you have remaining by
calling NSOA.context.remainingUnits(). See the table below for the unit value of each NSOA function.

Note: Scheduled scripts are allowed 1, 000, 000 units.

■ SendMail Limit — Additional limits are placed on the NSOA.meta.sendMail(message) function. Form
Scripts are allowed to send a maximum of 3 emails. Scheduled Scripts are allowed to send a maximum
of 100 emails. The email subject is trimmed to the first line passed.

User Scripting

Scripting Governance 53

Important: There is a maximum body length set for your emails sent by form and
scheduled scripts. Email messages with bodies above that maximum body length are not sent.

The maximum body length is set to 30,000 characters by default and can be changed to suit
your requirements. To review or to increase the maximum body length set for your account,
contact OpenAir Customer Support.

NSOA Function Units

■ NSOA.record.<complex type>([id]) 0

■ NSOA.context.getParameter(name)

■ NSOA.form.confirmation(message)

■ NSOA.form.error(field, message)

■ NSOA.form.getLabel(field)

■ NSOA.form.getName(field)

■ NSOA.form.getNewRecord()

■ NSOA.form.getOldRecord()

■ NSOA.form.getValue(field)

■ NSOA.form.get_value(field)

■ NSOA.form.warning(message)

■ NSOA.listview.list()

■ NSOA.report.list()

■ NSOA.wsapi.disableFilterSet([flag])

■ NSOA.wsapi.enableLog([flag])

■ NSOA.wsapi.whoami()

1

■ NSOA.context.parseTerminology(message)

■ NSOA.meta.alert(message)

■ NSOA.meta.log(severity, message)

4

Note: Calls to NSOA.meta.log(severity, message)
with the severity parameter set to “debug” or “trace”
do not consume units but are limited to a maximum
of 1000 per script.

■ NSOA.context.getAllParameters()

■ NSOA.context.getAllTerms()

■ NSOA.form.getAllValues()

■ NSOA.https.get(request)

■ NSOA.https.post(request)

■ NSOA.https.put(request)

■ NSOA.https.patch(request)

■ NSOA.https.delete(request)

■ NSOA.meta.sendMail(message)

■ NSOA.NSConnector.integrateRecord()

10

■ NSOA.listview.data(listviewId)

■ NSOA.report.data(reportId,optionalParameters)

10 for each page loaded into iterator on demand

User Scripting

Scripting Governance 54

NSOA Function Units
(max 1000 items per page)

■ NSOA.wsapi.read(readRequest)

■ NSOA.wsapi.add(objects)

■ NSOA.wsapi.delete(objects)

■ NSOA.wsapi.submit(submitRequest)

■ NSOA.wsapi.approve(approveRequest)

■ NSOA.wsapi.reject(rejectRequest)

■ NSOA.wsapi.unapprove(unapproveRequest)

20

+10 for each additional object passed.

■ NSOA.wsapi.modify(attributes, objects)

■ NSOA.wsapi.upsert(attributes,objects)

40

+20 for each additional object passed.

■ NSOA.NSConnector.integrateAllNow()

■ NSOA.NSConnector.
integrateWorkflowGroup(name)

1000

SOAP API

User scripting provides access to the SOAP API (Web Services) through the NSOA.wsapi functions, see
NSOA Functions. Before you begin using these functions, consult the API documentation. See XML
API & SOAP API.

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf
https://app.openair.com/download/XMLAndSOAPAPI.pdf

SOAP API 55

Important: You should review API Best Practice Guidelines carefully before you start using
NSOA.wsapi functions.

Tip: All OpenAir Complex types start “oa”, for example “oaCategory”. You can look up the OpenAir
Complex Types and their properties from the following link: https://app.openair.com/wsdl.pl.

If you strip away the “oa” you are left with the table name, for example “Issue”. You can look up
tables in the OpenAir data dictionary. To access the OpenAir data dictionary, use the link in the
navigation bar of the OpenAir Help Center or use the following URL https://<account-domain>/
database/single_user.html.

Note: You need the Enable user script support for Web Service API methods switch enabled
to use the NSOA.wsapi functions, see Scripting Switches.

Tip: Scripts are executed within the context of a user. This means that the user filter sets for the
signed in user will be applied unless disabled, see NSOA.wsapi.disableFilterSet([flag]).

Using the SOAP API:

■ Making SOAP Calls

■ Using SOAP Results

■ Handling SOAP Errors

Making SOAP Calls
The SOAP API is an object-oriented interface.

■ You pass in an array of OpenAir Complex Type objects as a parameter. An error will be returned if the
array contains more than 1000 objects.

Note: You create a complex type object with the NSOA.record.<complex type>([id]) function.
For the list of supported object types, see the help topic XML and SOAP API Business Object
Reference.

■ Some functions also require an array of Attribute objects as the first parameter.

■ Functions return either an object or array of objects:

□ NSOA.record.<complex type>([id]) returns an OpenAir Complex Type object.

□ NSOA.wsapi.read(readRequest) returns an array of ReadResult objects.

□ NSOA.wsapi.add(objects), NSOA.wsapi.delete(objects), NSOA.wsapi.modify(attributes, objects), and
NSOA.wsapi.upsert(attributes,objects) return an array of UpdateResult objects.

User Scripting

https://app.openair.com/help/index.html?topic=article_64155714964
https://app.openair.com/wsdl.pl
https://app.openair.com/help/index.html?topic=article_95152448975
https://app.openair.com/help/index.html?topic=article_95152448975

SOAP API 56

Important: The updated and created fields are maintained automatically by OpenAir. You can
read these values, but they cannot be modified.

Tip: It is more efficient to batch a series of objects together into a single SOAP API call rather
than making a separate call for each object. The objects in the array are processed according to
their order in the array.

Adding data
You add data to OpenAir by creating one or more OpenAir Complex Type objects, placing them into an
array, and passing the array to the NSOA.wsapi.add(objects) function. You must specify all the required
fields for the objects passed. The ID, updated and created fields are set automatically by OpenAir.

To add data to OpenAir

1. Create an OpenAir Complex Type object with the NSOA.record.<complex type>([id]) function.

 var category = new NSOA.record.oaCategory();

2. Fill out the properties for the object, see Objects.

 category.name = "New Category";
 category.cost_centerid = "123";
 category.currency = "USD";

3. Place the object into an array of objects, see Arrays.

 // To turn an object into an array of object, simply place it inside square brackets
 var objects = [category]; // or just pass [category]

4. Pass the objects as a parameter to the NSOA.wsapi.add(objects).

 var results = NSOA.wsapi.add([category]);

5. Check for any errors, see Handling SOAP Errors.

Modifying data
You modify data to OpenAir by creating one or more OpenAir Complex Type objects, placing them into an
array, and passing the array to the NSOA.wsapi.modify(attributes, objects) function. In each object passed,
you need to specify the internal id and only the properties (fields) in the objects that you want to change.
The updated field is set automatically by OpenAir.

To modify data in OpenAir

1. Create an OpenAir Complex Type object with the NSOA.record.<complex type>([id]) function.

 var category = new NSOA.record.oaCategory();

2. Fill out the internal ID for the object and the properties you want to change, see Objects.

 category.id = 79; // This is the ID of the existing customer
 category.cost_centerid = "453"; // The new value

3. Place the object into an array of objects, see Arrays.

User Scripting

SOAP API 57

 // To turn an object into an array of object, simply place it inside square brackets
 var objects = [category]; // or just pass [category]

4. Optionally create an array of attributes to pass.

 var attributes = [];

5. Pass the objects and attributes as parameters to the NSOA.wsapi.modify(attributes, objects).

 var results = NSOA.wsapi.modify([attributes], [category]);

6. Check for any errors, see Handling SOAP Errors.

Deleting data
You delete data from OpenAir by creating one or more OpenAir Complex Type objects, placing them into
an array, and passing the array to the NSOA.wsapi.delete(objects) function. In each object passed, you
need to specify the internal id.

Important: You cannot delete an entity (database record) that has dependent records. You
must first delete all the dependent records.

To delete data in OpenAir

1. Create an OpenAir Complex Type object with the NSOA.record.<complex type>([id]) function.

 var category = new NSOA.record.oaCategory();

2. Fill out the properties for the object, see Objects.

 category.id = 79;

3. Place the object into an array of objects, see Arrays.

 // To turn an object into an array of object, simply place it inside square brackets
 var objects = [category]; // or just pass [category]

4. Pass the objects as a parameter to the NSOA.wsapi.add(objects).

 var results = NSOA.wsapi.delete([category]);

5. Check for any errors, see Handling SOAP Errors.

Reading data
You read data from OpenAir by creating a ReadRequest object and passing it to the
NSOA.wsapi.read(readRequest) function.

Important: You must specify a limit Attribute.

To read data from OpenAir

1. Create an OpenAir Complex Type object with the NSOA.record.<complex type>([id]) function and
fill out the properties for the object to specify the search criteria.

User Scripting

SOAP API 58

 var user = new NSOA.record.oaUser();
 user.nickname = "jsmith";

2. Create a limit Attribute.

 var attribute = {
 name : "limit",
 value : "0,1000"
 }

3. Create a ReadRequest object and fill out the properties.

 var readRequest = {
 type : "User",
 method : "equal to", // return only records that match search criteria
 fields : "id, nickname, updated", // specify fields to be returned
 attributes : [attribute], // Limit attribute is required; type is Attribute
 objects : [user] // One object with search criteria
 }

4. Pass the ReadRequest object to the NSOA.wsapi.read(readRequest) function.

 var results = NSOA.wsapi.read(readRequest);

5. Check for any errors, see Handling SOAP Errors.
6. Process the results, see ReadResult.

See also the SOAP API — Prevent closing a project with an open issue code sample.

ReadRequest
The ReadRequest object is used to specify the required data to return in the
NSOA.wsapi.read(readRequest) function.

 // example read request - assumes attribute and user objects have been defined
 var readRequest = {
 type : "User",
 method : "equal to", // return only records that match search criteria
 fields : "id, nickname, updated", // specify fields to be returned
 attributes : [attribute], // Limit attribute is required; type is Attribute
 objects : [user] // One object with search criteria
 }

Property Allowed Values

type Any OpenAir Complex Type without the oa prefix for example “Issue”.

See NSOA.record.<complex type>([id]) for the list of types.

method ■ “all” — Returns all available records.

Note: Use this cautiously as too many records may be requested for the server or client
to handle.

■ “equal to” — return only records that match search.

■ “custom equal to” — return associated custom fields.

■ “not equal to” — return only records that do not match.

fields Comma separated list of fields to be returned for example "id, nickname, updated”.

User Scripting

SOAP API 59

Property Allowed Values
For more information about supported fields, see the help topic XML and SOAP API Business Object
Reference or https://app.openair.com/wsdl.pl.

attributes Array of attribute objects, see Attribute.

Important: The “limit” attribute is required.

objects Array of OpenAir Complex Type objects, see NSOA.record.<complex type>([id]).

Attribute
The attribute object is used to set additional criteria in the following NSOA methods:

■ NSOA.wsapi.modify(attributes, objects)

■ NSOA.wsapi.read(readRequest)

■ NSOA.wsapi.upsert(attributes,objects)

The attribute object is simply a pair of name and value properties.

 var attribute = {
 name : "limit",
 value : "10"
 }

See the table below for valid combinations of name and value.

name value

“limit” A single value (for example “500”) or range (for example “0, 1000”).

Single value: "1", "500", "1000" - simply restricts the number of records returned.

Range: "0, 1000" - the first integer specifies the offset of the first record to return and the
second integer limits the number of records to return.

To request data in consecutive batches, only the first part of the limit attribute should be
incremented - "0,1000", "1000,1000", "2000,1000", etc. Sequence requests should be submitted
until the result comes back empty or has less than 1000 items.

See Reading data.

“filter” ■ “newer-than”

■ “not-exported”

■ “older-than”

Note: Options can be placed into a comma separated list, for example "newer-
than,older-than,not-exported".

”update_custom” Set to ”1” to enable the updating of custom fields. See Updating Custom Fields.

Using SOAP Results
There are three types of results that can be returned from a successful wsapi SOAP call:

User Scripting

https://app.openair.com/help/index.html?topic=article_95152448975
https://app.openair.com/help/index.html?topic=article_95152448975
https://app.openair.com/wsdl.pl

SOAP API 60

■ OpenAir Complex Type object

■ Array of ReadResult objects

■ Array of UpdateResult objects

ReadResult
The NSOA.wsapi.read(readRequest) function returns the ReadResult object.

For example, if the fields to be returned were "id, nickname, updated”, the objects property for the
returned ReadResult object would be:

// example ReadResult object - assumes the fields to be returned were "id, nickname, updated"
 [
 {
 "errors": null,
 "objects": [
 {
 "id": "26",
 "nickname": "mcollins",
 "updated": "2019-10-03 15:42:23",
 "return_fields": {
 "id": "1",
 "nickname": "1",
 "updated": "1"
 }
 },
 {
 "id": "33",
 "nickname": "jadmin",
 "updated": "2019-09-03 09:12:46",
 "return_fields": {
 "id": "1",
 "nickname": "1",
 "updated": "1"
 }
 }
]
 }
]

Property Value

objects Array of Complex Type objects, each with the following properties:

■ One property for each field to be returned as listed in the ReadRequest object. Each property has:

□ key: field_name — name of the field to be returned

□ value: field_value — returned field value

■ return_fields — object with the following properties for each field to be returned:

□ key: field_name — name of the field to be returned

□ value: 1

errors Array of oaError objects.

UpdateResult
Thefollowing functions return the UpdateResult object.

■ NSOA.wsapi.add(objects)

■ NSOA.wsapi.delete(objects)

User Scripting

SOAP API 61

■ NSOA.wsapi.modify(attributes, objects)

■ NSOA.wsapi.upsert(attributes,objects)

Property Value

id Internal ID of the record created or updated.

errors Array of oaError objects.

status ■ “U” — record was updated.

■ “A” — record was added.

■ “D” — record was deleted.

■ “-1” — one or more errors occurred.

Also see Handling SOAP Errors.

Handling SOAP Errors
You should always check that any SOAP API call was successful before using the results.

■ For calls to NSOA.record.<complex type>([id]), only check that an object was returned.

 var category = new NSOA.record.oaCategory();
 if(!category)
 // An unexpected error has occurred!

■ For all other calls you need to check that a result was returned and did not contain any errors.

This is a two step process:

□ First check that you have an array of responses.

if (!result || !result[0])

□ If OK, then check if you have an errors property and you have at least one error.

else if (result[0].errors !== null && result[0].errors.length > 0)

 // example assuming readRequest has already been defined
 var result = NSOA.wsapi.read(readRequest);
 // Check for errors
 if (!result || !result[0]) {
 // An unexpected error has occurred!
 } else if (result[0].errors !== null && result[0].errors.length > 0) {
 // There are errors to handle!
 } else {
 // Process the response as expected
 }

The errors property is an array of oaError objects.

See Code Samples for more examples.

oaError
An array of oaError objects is returned in the ReadResult and UpdateResult objects.

User Scripting

SOAP API 62

Note: In this version, only the code property is available from user script.

Property Value

attributes An array of additional attributes for this complex type.

comment More Information for the error.

text Short Message for the error.

code Error code returned by the SOAP API.

Tip: For the full list of errors, see the help topic Error Codes.

See also Error Handling.

Who Am I
You can get information about the currently signed in user by calling the NSOA.wsapi.whoami() function.

The NSOA.wsapi.whoami() function returns an oaUser object.

 function test() {
 var user = NSOA.wsapi.whoami();
 NSOA.meta.alert("User ID " + user.id + " saved this record");
 }

oaUser
The oaUser object has more than 100 attributes defining user specific information. See User.

An oaUser object is returned by the NSOA.wsapi.whoami() function.

Outbound Calling

User Scripting

https://app.openair.com/help/index.html?topic=article_1127034536
https://app.openair.com/help/index.html?topic=article_83115442931

Outbound Calling 63

User scripting enables calls to external APIs through the NSOA.https functions, see NSOA Functions. Calls
to REST, XML and SOAP APIs are supported.

Note: You need the Enable user script support for https methods switch enabled to use the
NSOA.https functions, see Scripting Switches.

The following request methods are currently supported for form and scheduled scripts:

■ GET — NSOA.https.get(request) function
■ POST — NSOA.https.post(request) function
■ PUT — NSOA.https.put(request) function
■ PATCH — NSOA.https.patch(request) function
■ DELETE — NSOA.https.delete(request) function

The functions take the Request object as a single parameter and return the Response object.

User scripting also enables to create Password Script Parameters.

Request
The request object is used to set the request parameters.

Property Type Required /
Optional

Description

url string required The HTTPS URL being requested. Parameters can be passed
as part of the URL using a query string.

body array|object|string optional The data passed to the server. If the data is passed as an
array or object, it will be JSON serialized and URL encoded
automatically. Nested arrays and objects are supported. If
the data is passed as a string, it must be encoded correctly
by the user.

The GET method does not support this property.

headers object optional The HTTPS headers. The MIME type is set automatically to
application/json when body is an array or object.

Response
NSOA.https functions return the response object.

Property Type Description

body object|string The response body.

code string The HTTP response status code.

headers object The response headers.

Limits
The following limits apply to all NSOA.https functions:

User Scripting

Outbound Calling 64

■ The requested URL must use the HTTPS protocol and the server certificate must be validated.

■ The functions will follow redirects up to a maximum of 7.

■ If the client doesn’t start receiving a response from the server within 45 seconds of the request being
fully sent, a connection timeout occurs. If the request times out, a response object is returned with a
standard HTTP Status Code (500) and a "Client-Warning" header set.

■ The response must not exceed 1MB in size.

■ The functions use 10 units per call. See Scripting Governance.

Password Script Parameters
You can create password script parameters to store credentials such as passwords and access tokens
as encrypted values and use them in your scripts for secure deployment and maintenance. See Creating
Parameters.

The value is hidden both on the form used to set the parameter value and in the parameters list.

You can use the NSOA.context.getParameter(name) function to read the value for the specified password
parameter in your outbound calling scripts.

Note: Review the following guidelines:

■ Parameters need to be referenced before they can be used in a given script. This is done from
the Scripting Studio.

■ Password script parameter definitions may be saved as part of a platform solution. See
Creating Solutions.

Scripting Approvals
You can use scripts to submit, approve, reject, and unapprove bookings, timesheets, invoices, and
envelopes in OpenAir. The approvals workflow is shown below:

User Scripting

Scripting Approvals 65

Working with the Approvals System

Submitting Booking, Timesheets, Envelopes, and Invoices

Submit open or rejected bookings, timesheets, envelopes, and invoices which you have rights to in
OpenAir by creating an approval object, preparing the record for submission, defining an array of submit
requests, and passing the requests to the NSOA.wsapi.submit(submitRequest) function.

submitRequest

The NSOA.wsapi.submit(submitRequest) function takes an array of up to 1000 submitRequest objects.
Each submitRequest object contains an oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object to
submit and additional approval process information passed to an oaApproval object.

// Define the submit requests
var requests = [{
 submit: objectToProcess,
 attributes [], // attributes only apply when submitting timesheets
 approval: approvalObj
}];

Property Allowed Values

submit oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object

attributes Only accepts “submit_warning” for oaTimesheet

approval oaApproval

Approving Bookings, Timesheets, Envelopes, and Invoices

Approve submitted bookings, timesheets, envelopes, and invoices to which you have rights to in OpenAir
by creating an approval object, preparing the record for approval, defining an array of approve requests,
and passing the requests to the NSOA.wsapi.approve(approveRequest) function.

approveRequest

The NSOA.wsapi.approve(approveRequest) function takes an array of up to 1000 approveRequest objects.
Each approveRequest object contains an oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object to
approve and additional approval process information passed to an oaApproval object.

// Define the approve requests
var requests = [{
 approve: objectToProcess,
 attributes [], // pass an empty array for attributes when using approveRequest
 approval: approvalObj
}];

Property Allowed Values

User Scripting

Scripting Approvals 66

approve oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object

attributes Pass an empty array

approval oaApproval

Rejecting Bookings, Timesheets, Envelopes, and Invoices

rejectRequest
The NSOA.wsapi.reject(rejectRequest) function takes an array of up to 1,000 rejectRequest objects. Each
rejectRequest object contains an oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object to submit and
additional approval process information passed to an oaApproval object. The rejectRequest object is
used to specify the required data to return in the NSOA.wsapi.reject(rejectRequest) function.

// Define the reject requests
var requests = [{
 reject: objectToProcess,
 attributes [], // pass an empty array for attributes when using rejectRequest
 approval: approvalObj
}];

Property Allowed Values

reject oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object

attributes Pass an empty array

approval oaApproval

Unapproving Bookings, Timesheets, Envelopes, and Invoices
The NSOA.wsapi.unapprove(unapproveRequest) function takes an array of up to 1,000 unapproveRequest
objects. Each unapproveRequest object contains an oaBooking, oaTimesheet, oaEnvelope, or
oaInvoice object to unapprove and additional approval process information passed to an oaApproval
object. The unapproveRequest object is used to specify the required data to return in the
NSOA.wsapi.unapprove(unapproveRequest) function.

unapproveRequest
The unapproveRequest object is used to specify the required data to return in the
NSOA.wsapi.unapprove(unapproveRequest) function.

// Define the unapprove requests
var requests = [{
 unapprove: objectToProcess,
 attributes [], // pass an empty array for attributes when using unapproveRequest
 approval: approvalObj
}];

Property Allowed Values

User Scripting

Scripting Approvals 67

unapprove oaBooking, oaTimesheet, oaEnvelope, or oaInvoice object

attributes Pass an empty array

approval oaApproval

Using Approval Results
There is one type of result which can be returned from a successful wsapi approval call:

■ Array of ApprovalResult objects

ApprovalResult
The following functions return the ApprovalResult object.

■ NSOA.wsapi.submit(submitRequest)

■ NSOA.wsapi.approve(approveRequest)

■ NSOA.wsapi.reject(rejectRequest)

■ NSOA.wsapi.unapprove(unapproveRequest)

Property Value

id Internal ID of the object for approval action.

approval_warnings String representing any warnings.

approval_errors String representing any errors

log String representing the log of actions.

errors Array of oaError objects.

approval_status The approval status of the record

■ “O” — Open

■ “S” — Submitted

■ “A” — Approved

■ “R” — Rejected

■ “X” — Archived

Also see Handling Approval Errors.

Handling Approval Errors
You should always check that any approval API call was successful before using the results.

■ For calls to NSOA.wsapi.submit(submitRequest), NSOA.wsapi.approve(approveRequest),
NSOA.wsapi.reject(rejectRequest), and NSOA.wsapi.unapprove(unapproveRequest), you should check
that a result was returned and did not have any errors.

User Scripting

Scripting Approvals 68

This is a two-step process:

■ First, check that you have an array of responses.

if (!result || !result[0])

■ If OK, then check if you have an errors property and you have at least one error.

else if (result[0].errors !== null && result[0].errors.lenth > 0)

The following example checks for errors when using the NSOA.wsapi.approve(approveRequest) function:

// example assuming requests have already been defined
var results = NSOA.wsapi.approve(requests);
// Check for errors
if (!result || !result[0]) {
 // An unexpected error has occurred!
} else if (result[0].errors !== null && result[0].errors.length > 0) {
 // There are errors to handle!
} else {
 // Process the response as expected
}

The errors property is an array of oaError objects.

See Code Samples for more examples.

Custom Fields

Creating Custom Fields

To create a Custom Field:

1. Go to Administration > Global Settings > Custom Fields.

2. Select New Custom field from the Create Button.

3. Select the entity the custom field is associated with along with the type of field you are creating.
Click Continue.

4. Type the Field name. This is required. The name cannot have any spaces, but you can use
underscores.

5. Check the Active box.

6. Type a Description. This is optional and is used for adding information about the new custom field.

7. Type the Display name. This is what displays on the form associated with the entity.

8. If desired, type a Hint to help your OpenAir employees understand the intent of the custom field.

9. If you check the Required box, the field is required on the form and the form cannot to be saved
without supplying a value.

10. If you check the Unique box, a unique value must be entered in the field to be able to save the
form.

11. If you check the box to Hide on data entry forms, this custom field does not display on the form.

User Scripting

Custom Fields 69

12. If you check the box for Add Notes, a text box displays under the custom field for employees to add
any additional notes.

13. If you check the box for Divider, a divider line displays before the custom field. You can also type
Divider text that displays in the Divider Line.

Note: You may want to use Divider lines when you are defining a new section that needs
to stand out on the form. For example, a series of custom fields defining a topic such as
contract management may start with a Contract received box. The divider line indicates the
start of the contract management fields.

14. Click Save. After you save the form, a Position field displays. Position determines the order of the
custom field on the entity's form. To change the position, adjust the value using the drop-down list
and click Save.

See the Administrator Guide for more details on creating customer fields.

Tip: If you have added a new custom field and this is not listed in the Form Schema of the
Scripting Studio, open the form with the new custom field to refresh the custom field list, and then
open the Scripting Studio again.

Example Date field for Project forms

User Scripting

https://app.openair.com/download/AdministratorGuide.pdf

Custom Fields 70

Note: This custom field is referred to in the code examples that follow.

The custom field will then be visible on the project form.

Reading Custom Fields
Use the Form Schema to find the correct field name for the custom field.

You can read the custom field value and label in the same way as for standard fields.

// Read the date value and log the value if the date is not empty
function logReviewDate(){
 var reviewDate = NSOA.form.getValue('ReviewDate__c');
 if(reviewDate !== null) {
 NSOA.meta.alert(reviewDate.toString());
 }
}

Note: The old approach to reading custom fields using custom_ with the internally assigned
custom field number appended is d. Use the custom fields name followed by __c (underscore
underscore c) instead.

// Supported but NOT RECOMMENDED
var reviewDate = NSOA.form.getValue('custom_15');
}

To read a custom field value using record functions

User Scripting

Custom Fields 71

1. Create an OpenAir record object with the NSOA.record.<complex type>([id]),
NSOA.form.getNewRecord() or NSOA.form.getOldRecord() functions.

 var proj = NSOA.form.getOldRecord(); // Call on 'After save' event

2. The custom field name is the Field name defined for the custom field with the special ‘__c’ suffix
appended to identify it as a custom field.

 // custom field name = 'ReviewDate' + '__c';

3. Use the name to access the custom field value in the record object.

 var reviewDate = proj.ReviewDate__c;

See also Updating Custom Fields.

Updating Custom Fields
For NSOA.wsapi functions, the name of the custom field is the Field name defined for the custom field
with the special ‘__c’ suffix appended to identify it as a custom field. It is also necessary to explicitly enable
custom field updating.

Important: It is not possible to rename, change, or delete a custom field which is being used
by an active script. This prevents unintended script problems.

To update a custom field

1. Create an OpenAir record object with the NSOA.record.<complex type>([id]),
NSOA.form.getNewRecord() or NSOA.form.getOldRecord() functions.

 var updProj = NSOA.form.getNewRecord(); // Get the record to modify
 var recProj = new NSOA.record.oaProject(); // Record to specify only the values to update
 recProj.id = updProj.id; // We need the ID to update the correct record

2. Use the correct name format for the custom field, that is Field name defined for the custom field +
‘__c’.

 recProj.ReviewDate__c = '2014-01-16'; // Notice the date format YYYY-MM-DD

3. The ‘update_custom’ Attribute must be specified.

 var attribute = {
 name : 'update_custom',
 value : "1"
 }

4. Call NSOA.wsapi.modify(attributes, objects).

 var projResults = NSOA.wsapi.modify([attribute], [recProj]);

5. Check for any errors, see Handling SOAP Errors.

6. Process the results, see UpdateResult.

User Scripting

NSOA Functions 72

NSOA Functions

The following functions are provided to allow you to interact with OpenAir:

■ NSOA.context
□ NSOA.context.getAllParameters()
□ NSOA.context.getAllTerms()
□ NSOA.context.getLanguage()
□ NSOA.context.getParameter(name)
□ NSOA.context.getTerm(termid)
□ NSOA.context.isTestMode()
□ NSOA.context.parseTerminology(message)
□ NSOA.context.remainingTime()
□ NSOA.context.remainingUnits()

■ NSOA.form

User Scripting

NSOA Functions 73

□ NSOA.form.confirmation(message)

□ NSOA.form.error(field, message)

□ NSOA.form.getAllValues()

□ NSOA.form.getLabel(field)

□ NSOA.form.getName(field)

□ NSOA.form.getNewRecord()

□ NSOA.form.getOldRecord()

□ NSOA.form.getValue(field)

□ NSOA.form.get_value(field)

□ NSOA.form.setValue(field, value)

□ NSOA.form.warning(message)

■ NSOA.https

□ NSOA.https.delete(request)

□ NSOA.https.get(request)

□ NSOA.https.patch(request)

□ NSOA.https.post(request)

□ NSOA.https.put(request)

■ NSOA.listview

□ NSOA.listview.data(listviewId)

□ NSOA.listview.list()

■ NSOA.meta

□ NSOA.meta.alert(message)

□ NSOA.meta.log(severity, message)

□ NSOA.meta.sendMail(message)

■ NSOA.NSConnector

□ NSOA.NSConnector.integrateAllNow()

□ NSOA.NSConnector.integrateRecord()

□ NSOA.NSConnector.integrateWorkflowGroup(name)

■ NSOA.record

NSOA.record.<complex type>([id])

■ NSOA.report

□ NSOA.report.data(reportId,optionalParameters)

□ NSOA.report.list()

■ NSOA.wsapi

□ NSOA.wsapi.add(objects)

□ NSOA.wsapi.approve(approveRequest)

□ NSOA.wsapi.delete(objects)

□ NSOA.wsapi.disableFilterSet([flag])

□ NSOA.wsapi.enableLog([flag])

□ NSOA.wsapi.modify(attributes, objects)

User Scripting

NSOA Functions 74

□ NSOA.wsapi.read(readRequest)

□ NSOA.wsapi.reject(rejectRequest)

□ NSOA.wsapi.remainingTime()

□ NSOA.wsapi.submit(submitRequest)

□ NSOA.wsapi.unapprove(unapproveRequest)

□ NSOA.wsapi.upsert(attributes,objects)

□ NSOA.wsapi.whoami()

NSOA.context.getAllParameters()
Use this function to get an Associative Array of all the script parameters and values set for the script.

See Script Parameters.

Parameters
(none)

Returns
An Associative Array of all the script parameters and values for the script.

Units Limit
10 units

For more information, see Scripting Governance.

Since
April 18, 2015

Example
This example creates a local variable called allParams with an Associative Array of all the script
parameters and values for the script. It then uses a for in loop to log each parameter name and current
value.

// Get all the parameters available for the script
var allParams = NSOA.context.getAllParameters();

// Loop through all the parameters
for (var key in allParams) {
 NSOA.meta.alert(key + ' has value ' + allParams[key]);
}

See NSOA.meta.alert(message).

See also NSOA.context.getParameter(name).

User Scripting

NSOA Functions 75

NSOA.context.getAllTerms()
Use this function to get an Associative Array of all the terminology identifiers and values set for the
account.

See Script Terminology.

Parameters
(none)

Returns
An Associative Array of all the terminology identifiers and values for the account.

Units Limit
10 units

For more information, see Scripting Governance.

Since
April 18, 2015

Example
This example creates a local variable called allTerms with an Associative Array of all the terminology and
values for the account. It then uses a for in loop to log each term and current value.

// Get all the terminology available for the script
var allTerms = NSOA.context.getAllTerms();

// Loop through all the terminology
for (var key in allTerms) {
 NSOA.meta.alert(key + ' has value ' + allTerms[key]);
}

See NSOA.context.parseTerminology(message) and NSOA.context.getTerm(termid).

See also Accessing Terminology.

NSOA.context.getLanguage()
Use this function to get the user’s display language preference. You can then adapt your form scripts
according to the user’s language preference and show translated versions of the same message, for
example.

Parameters
(none)

User Scripting

NSOA Functions 76

Returns
A two-character string — the ISO 639–1 two-letter code for the language selected in the authenticated
users’s personal settings, or xx, if the Show language keys view option is in use.

Note: If the Multilanguage feature is not enabled, the function returns en.

Language Two-letter code

Chinese (Simplified) zh

Czech cs

English en

French fr

German de

Japanese ja

Spanish es

Units Limit
0 units

For more information, see Scripting Governance.

Since
April 9, 2022

Example
This example creates a local variable called lang with the user’s language preference. It then uses
conditional branching to display a message in the user’s preferred language.

// return user language code : en | fr | de | es | zh | ja | cs
var lang = NSOA.context.getLanguage();

if (lang == 'cs') {
 // display messages in the Czech language"
}
if (lang == 'en') {
 // display messages in the English language"
}

NSOA.context.getParameter(name)
Use this function to get the value set for the specified parameter.

See Script Parameters.

User Scripting

NSOA Functions 77

Parameters
name {string} [required] — The name of the parameter.

Note: Use the Script Parameters section in the Scripting Studio or the Scripting Center to lookup
the parameter name to use.

Returns
The value of the specified parameter.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
April 18, 2015

Example
This example shows a field value being checked against a parameter value.

// return if new stage is not closed
if (NSOA.form.getValue('project_stage_id') !=
 NSOA.context.getParameter('ProjectClosedStage'))
return;

See Prevent closing a project that has open issues.

NSOA.context.getTerm(termid)
Use this function to get the term used for the specified terminology identifier.

See Script Terminology.

Parameters
termid {string} [required] — The internal identifier for the term.

Note: Use the Terminology section in the Scripting Studio to lookup the parameter names to
use.

Returns
The term used for the specified terminology identifier.

User Scripting

NSOA Functions 78

Units Limit
0 units

For more information, see Scripting Governance.

Since
April 18, 2015

Example
This example shows what would be returned if the account terminology had redefined project to job.

var proj_term = NSOA.context.getTerm('Projects');
// proj_term = "Jobs"

See NSOA.context.parseTerminology(message) and NSOA.context.getAllTerms().

See also Accessing Terminology.

NSOA.context.isTestMode()
Use this function to determine if the script is being run in test mode.

For more information see Testing and Debugging.

Parameters
(none)

Returns
Boolean true if the script is running in test mode and false otherwise.

Units Limit
0 units

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This example shows some code that only runs in “Test mode”, for example an assertion.

 if(NSOA.context.isTestMode() && someVar==null)
 throw new Error("someVar should never be null");

User Scripting

NSOA Functions 79

NSOA.context.parseTerminology(message)
Use this function to convert a string containing terminology phrases (terminology identifiers surrounded
by ‘%’ characters) into a string using the correct terminology set for the account.

See Script Terminology.

Parameters
message {string} [required] — The message containing terminology phrases to replace with terms used in
the account.

Returns
The passed string with all the terminology phrases replaced by the terms used in the account.

Units Limit
4 units

Note: Calls to NSOA.meta.log(severity, message) with the severity parameter set to “debug” or
“trace” do not consume units but are limited to a maximum of 1000 per script.

For more information, see Scripting Governance.

Since
April 18, 2015

Example
This example shows what would be returned if the account terminology had redefined project to job.

var msg = NSOA.context.parseTerminology("Notes attached to %project%.")
// msg = "Notes attached to job.";

See NSOA.context.getTerm(termid) and NSOA.context.getAllTerms().

See Accessing Terminology.

NSOA.context.remainingTime()
Use this function to determine how much time your script has remaining to execute (excluding wsapi call
time) before it is terminated by Scripting Governance.

You can use this function to help you create more efficient scripts and also to take corrective action if a
script is at risk of consuming excessive resources.

Parameters
(none)

User Scripting

NSOA Functions 80

Returns
Amount of time remaining allowed for the script to execute in milliseconds (excluding wsapi call time).

Tip: Always try to reduce the amount of time your scripts take to execute.

Units Limit
0 units

For more information, see Scripting Governance.

Since
October 18, 2014

Example
This example logs the amount of time remaining for the script to execute in milliseconds (excluding wsapi
call time).

 NSOA.meta.log('info', 'Remaining script time: '
 + NSOA.context.remainingTime() + ' milliseconds');

See also NSOA.wsapi.remainingTime().

For more information see Scripting Governance.

NSOA.context.remainingUnits()
Use this function to determine how many units your script has left before it will be halted by OpenAir.
Each script is allowed to consume a maximum of 1000 units.

For more information see Scripting Governance.

Parameters
(none)

Returns
The number of units remaining.

Tip: Always try to reduce the number of units your scripts consume. Notice that NSOA.record
functions consume zero units, but NSOA.wsapi functions consume 10 units for each call.

Units Limit
0 units

For more information, see Scripting Governance.

User Scripting

NSOA Functions 81

Since
August 17, 2013

Example
This example displays the number of units consumed at the top of the form as an error message when
executing a from scripts.

 var consumedUnits = 1000 - NSOA.context.remainingUnits();
 NSOA.form.error('','Units consumed: ' + consumedUnits);

See also NSOA.form.error(field, message).

For more information see Scripting Governance.

NSOA.form.confirmation(message)
Use this function to print a confirmation message on the OpenAir form. The message that appears will
look exactly like the OpenAir system-generated confirmation messages.

Note: This function will only have an affect on the After save and After approval events, see
Events.

Parameters
message {string} [required] — The confirmation message to display on the form.

Note: This message will be displayed instead of the system-generated confirmation message for
the form.

Returns
True if the function was successful and false otherwise.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
October 17, 2015

Example
This example displays the confirmation message 'A confirmation message' at the top of the form after the
form is saved.

 NSOA.form.confirmation("A confirmation message");

User Scripting

NSOA Functions 82

The message appears as a OpenAir system-generated confirmation.

See Code Samples for more examples.

NSOA.form.error(field, message)
Use this function to print an error message associated to the selected form field on the OpenAir form.
The first argument is the field name on the form where you want the message to show up. The message
that appears will look exactly like the OpenAir system-generated errors.

Note: The is function has no affect on the After save form event, see Events.

Parameters
■ field {string} [required] — The name of the field on the form to display the error next to, or an empty

string to display the message at the top of the form.

Note: This is not the label the user sees displayed next to the field on the form. Use the Form
Schema to find the correct field name value.

■ message {string} [required] — The error message to display on the form.

Returns
True if the function was successful and false otherwise.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
August 17, 2013

Example
■ This example displays the error message 'An error message' next to the budget_time field.

 NSOA.form.error('budget_time', "An error message");

The message appears as a OpenAir system-generated error.

User Scripting

NSOA Functions 83

■ This example displays the error message 'An error message' at the top of the form.

 NSOA.form.error('', "An error message");

The message appears as a OpenAir system-generated error.

See Code Samples for more examples.

NSOA.form.getAllValues()
Use this function to get an Associative Array of all the fields and values on the OpenAir form. Keep in
mind, any pick lists (for example Customer:Project, Employee, Expense item) will return an internal_id
and not a text value. In this release, only fields directly related to the form are available (for example no
related table lookups are available now). See also NSOA.form.getValue(field).

User Scripting

NSOA Functions 84

Parameters
(none)

Returns
An Associative Array of all the fields and values on the form. Use the Form Schema to find the names and
data types returned.

Note: Some fields return an object. See Object Fields for more details.

Units Limit
10 units

For more information, see Scripting Governance.

Since
August 17, 2013

Example
■ This example creates a local variable called allValues with an Associative Array of all the fields and

values on the form. It then reads the project_name and start_date from the allValues variable.

 var allValues = NSOA.form.getAllValues();

 var project_name = allValues.name; // equivalent to getValue('name');
 var start_date = allValues.start_date; // equivalent to getValue('start_date');

See also NSOA.form.getValue(field).

Note: Some fields return an object. See Object Fields for more details.

■ You can loop through the keys of an associative array with the for in loop.

// Get all the values on the fields on the form
var allValues = NSOA.form.getAllValues();

//Loop through all the values
for(var key in allValues) {
 NSOA.meta.alert(key + ' has value ' + allValues[key]);
}

See NSOA.form.getAllValues() and NSOA.meta.alert(message).

See Code Samples for more examples.

NSOA.form.getLabel(field)
Use this function to get the label the user sees for a field on the OpenAir form.

User Scripting

NSOA Functions 85

Parameters
field {string} [required] — The name of the field on the form.

Note: This is not the label the user sees displayed next to the field on the form. Use the Form
Schema to find the correct field name value.

Returns
The text value the users sees for specified field.

Note: Some fields return an object. See Object Fields for more details.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
August 17, 2013

Example
■ This example gets the label for the date field on the form the script is attached to.

 var receiptDateLabel = NSOA.form.getLabel('date');

■ This example gets the label for a field that returns an object. See Object Fields for more details.

// 'Primary loaded cost ' for the first row
var label = NSOA.form.getLabel('loaded_cost')[0].cost_0;

See Code Samples for more examples.

NSOA.form.getName(field)
Use this function to get the parameter name of the field.

Note: This is generally the same as the field name, that is, the required parameter to call this
function. The function is useful when working with Object Fields.

Parameters
field {string} [required] — The name of the field on the form.

User Scripting

NSOA Functions 86

Note: This is not the label the user sees displayed next to the field on the form. This is the name
of the field displayed in the Form Schema.

Returns
The parameter name needed to refer to this field in user scripts.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
August 17, 2013

Example
■ In this example the name returned is the same as the field name passed in, that is, budget_time.

 var name = NSOA.form.getName('budget_time');

■ In this example the name is the field name for the row and column specified for the loaded_cost
object. See Object Fields for more details.

// 'Primary loaded cost ' for the first row
var name = NSOA.form.getName('loaded_cost')[0].cost_0;

See Code Samples for more examples.

NSOA.form.getNewRecord()
Use this function to get the entity record for a form with the newly saved values, for example oaProject.

This function should be called on the After save event, see Events.

See also NSOA.form.getOldRecord().

Parameters
(none)

Returns
OpenAir Complex Type object, see NSOA.record.<complex type>([id]).

Note: This function will return null if called before the form has been saved.

Units Limit
1 unit

User Scripting

NSOA Functions 87

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This example modifies the project notes after the project has been saved.

Note: This script would be called on the "After save" event for the Project form

 // Get the new record values
 var newr = NSOA.form.getNewRecord();

 // Create a new record with field to modify
 var project = new NSOA.record.oaProject();
 project.id = newr.id; // Need to specify the internal ID
 project.notes = newr.notes + "\nAppended to notes: " + (new Date().toString()); // New value for field

 // Modify the notes
 NSOA.wsapi.disableFilterSet(true); // Drop user filters - make this a generic script
 var arrayOfupdateResult = NSOA.wsapi.modify([], [project]);

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.form.getOldRecord()
Use this function to get the entity record for a form with the current (not yet saved) values, for example
oaProject.

See also NSOA.form.getNewRecord().

Tip: An Entrance Function can optionally receive a type string parameter. Check if the value of
this parameter is ‘update’ to determine if the form is being modified.

Parameters
(none)

Returns
OpenAir Complex Type object, see NSOA.record.<complex type>([id]).

Note: This function will return null if called for a form that is being created.

Units Limit
1 unit

User Scripting

NSOA Functions 88

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This example checks to see if the project name has been modified.

 var oldr = NSOA.form.getOldRecord();
 var newr = NSOA.form.getNewRecord();
 if (oldr.name !== newr.name)
 NSOA.meta.alert("Project name changed to: " + newr.name);

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.form.getValue(field)
Use this function to get the value of the field on the OpenAir form. Keep in mind, any pick lists (for
example Customer:Project, Employee, Expense item) will return an internal_id and not a text value. In
this release, only fields directly related to the form are available (for example no related table lookups are
available now). See also NSOA.form.getAllValues() and NSOA.form.get_value(field).

Parameters
field {string} [required] — The name of the field on the form.

Note: This is not the label the user sees displayed next to the field on the form. Use the Form
Schema to find the correct field name value.

Returns
The value in the specified field. Use the Form Schema to find the data type of the returned value.

Note: Some fields return an object. See Object Fields for more details.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
August 17, 2013

User Scripting

NSOA Functions 89

Example
■ This example creates a local variable called receiptDate and sets its value to the content of the date

field on the form the script is attached to.

 var receiptDate = NSOA.form.getValue('date');

■ This sample gets a value from a field that returns an object. See Object Fields for more details.

// First get the object variable for the field and then get the cost_0 value for the first row
var loaded_cost_obj = NSOA.form.getValue("loaded_cost");
var value = loaded_cost_obj[0].cost_0;

// You can combine these two steps into one line
var value = NSOA.form.getValue("loaded_cost")[0].cost_0;

See Code Samples for more examples.

NSOA.form.get_value(field)
Use this function to get the value of the field on the OpenAir form. Keep in mind, any pick lists (for
example Customer:Project, Employee, Expense item) will return an internal_id and not a text value. In
this release, only fields directly related to the form are available (for example no related table lookups are
available now).

Note: You should use NSOA.form.getValue(field) or NSOA.form.getAllValues() in preference to
using NSOA.form.get_value(field).

Parameters
field {string} [required] — The name of the field on the form.

Returns
The value of the field on the form as a string.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
March 17, 2012

Example
This example creates a local variable called receiptDate and sets its value to the content of the date field
on the form the script is attached to.

User Scripting

NSOA Functions 90

 var receiptDate = NSOA.form.get_value('date');

See also NSOA.form.getValue(field) and NSOA.form.getAllValues().

See Code Samples for more examples.

NSOA.form.setValue(field, value)
Use this command to set form values on the submit scripting event and to update values as part of the
main form save, without needing to write WSAPI (SOAP) calls. The effect is the same as a user making
manual changes to a field.

Full validation from your other scripts or rules is applied after the changes are made, ensuring your
changes are safe. Form default values are applied before the script is run, and any permission rules or
"After save" scripts are applied after the "On submit" script runs.

Error messages can be raised on the submit event. If errors are raised, the script will still run to
completion, and the errors will be logged.

The function takes two parameters:

■ The field you want to change

■ The value to set in the field (either literal or variable)

The NSOA.form.setValue function supports the following field types: text, text area, date, numeric,
currency, days, hours, ratio, checkbox, dropdown, dropdown and text, pick list and radio group. The
following field types are not supported: password, sequence and multiple selection.

See Examples for individual use cases.

Parameters
■ field {string} [required] — The name of the field on the form to set the value for

User Scripting

NSOA Functions 91

■ value {permitted value type for field} [required] — The value to set in the field. May be text, numbers,
date values or ISO-8601-formatted strings, the NSOA.form.getValue command, true or false, or null
values, depending on the field affected.

Note: You can reference custom fields using either to the user-defined custom field name
suffixed with _c (for example my_custom_radio_group_c or the internal custom field ID prefixed by
custom_ and the (for example, custom_42). You should reference custom fields by their user-defined
names to ensure your scripts are portable.

Returns
True if the function was successful and false otherwise. If the function fails, it writes a descriptive message
to the script log.

Units Limit
1 unit

Since
April 15, 2017

Examples
■ Text field

□ This example enters a text string into a "Notes" field.

NSOA.form.setValue('notes', 'Note text here');

□ To clear a text field, use an empty string in the second parameter.

NSOA.form.setValue('notes', '');

Note: The example above only uses single quotes, not double quotes.

Setting the value to null clears the text field.

NSOA.form.setValue('notes', null);

This example sets a “Notes” field using the getValue command.

Note: NSOA.form.setValue supports both the new (prj_custpo_num__c) and old
(custom_24) methods of referencing custom fields. When creating portable scripts, always
use the new format for referencing custom fields.

NSOA.form.setValue('notes', NSOA.form.getValue('name'));

■ Numeric field

□ Numeric values must be written using the base U.S. number format, for example, "23.67". Number
values are displayed according to the user's settings in Regional Settings > Number format.

User Scripting

NSOA Functions 92

NSOA.form.setValue("prj_sales_rep_ratio_1__c", 23.67);

□ Use a null value to clear a numeric field using setValue.

NSOA.form.setValue("prj_sales_rep_ratio_1__c", null);

■ Date field

□ SetValue can set the value of <date> fields using date values or ISO-8601-formatted strings, for
example, YYYY-MM-DD. Date values are displayed according to the user's settings in Regional
Settings > Date format.

NSOA.form.setValue('start_date', '2017-01-23');

Note: An error is logged when you attempt to set a date field with an invalid date string.

□ Use a null value to clear a date field:

NSOA.form.setValue('start_date', null);

■ Checkbox field

□ Use true or false values to set checkboxes.

NSOA.form.setValue("active", true);

□ Use false to clear a checkbox:

NSOA.form.setValue("active", false);

Note: If you use setValue to set a null value for a checkbox, an error will be logged.

■ Dropdown / Dropdown and text field

□ To set a dropdown (or dropdown and text field) field value, use one of the values from the
dropdown list, as it is displayed.

NSOA.form.setValue("currency", "EUR");

□ Set the value to "Select ..." to clear any selected value.

NSOA.form.setValue("tax_location_id", "Select...");

□ When using NSOA.form.setValue to set a value for a dropdown field, an error is logged if the value
parameter is not one of the available dropdown options.User Scripting

NSOA Functions 93

■ Pick list field

□ Set the pick list field value by its internal identifier. Meta values are also supported — in the
example below, the internal identifier for [Project owner] is —3.

Tip: To find the internal identifier for meta values, you can use developer tools on your
browser. Point to the pick list, right-click and select Inspect element to display the HTML
for the pick list element. You can retrieve the name of the field from the name attribute of
the <select> element and the internal identifier from the value attribute of the <option>
element.

NSOA.form.setValue("ta_approver_choice", "-3");

□ When using NSOA.form.setValue to set a value for a dropdown field, an error is logged if the value
parameter is not one of the dropdown options.

□ Set the value to "BLANK" to clear any selected value.

NSOA.form.setValue("ta_approver_choice", "BLANK");

□ An error is logged if the value parameter is not the internal identifier for one of the available pick
list options.

■ Radio group field

□ Set a radio group field value by the radio button name.

Note: You can reference custom fields using the user-defined name — for example
prj_radio_group_c — or the internal reference — for example custom_42. Always reference
custom fields by their the user-defined names to create portable scripts.

NSOA.form.setValue("prj_radio_group_c", "three");

or

NSOA.form.setValue("custom_42", "three");

User Scripting

NSOA Functions 94

□ Set the value to an empty string "" or to null to clear any selected value.

NSOA.form.setValue("prj_radio_group_c", "");

or

NSOA.form.setValue("prj_radio_group_c", null);

□ An error is logged if the value parameter is invalid. Radio button values, as displayed on the screen,
null and an empty string "" are the only valid values.

NSOA.form.warning(message)
Use this function to print a warning message on the OpenAir form. The message that appears will look
exactly like the OpenAir system-generated warning messages.

Note: This function will only have an affect on the After save and After approval events, see
Events.

Parameters
message {string} [required] — The warning message to display on the form.

Note: This message will be displayed instead of the system-generated warning message for the
form.

Returns
True if the function was successful and false otherwise.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
October 17, 2015

Example
This example displays the warning message 'A warning message' at the top of the form after the form is
saved.

User Scripting

NSOA Functions 95

 NSOA.form.warning("A warning message");

The message appears as a OpenAir system-generated warning.

See Code Samples for more examples.

NSOA.https.delete(request)
Use this function to send an HTTPS DELETE request to delete resources on a server. In general, DELETE
requests support both query string parameters and a request body. The exact use of DELETE requests
and what data is returned depends on the implementation of the server. The function will return an error
if the URL requested does not use the HTTPS protocol. The function will follow redirects up to a maximum
of 7. The response must not exceed 1MB in size.

Note: If the client doesn’t start receiving a response from the server within 45 seconds of the
request being fully sent, a connection timeout occurs. If the request times out, a response object is
returned with a standard HTTP Status Code (500) and a "Client-Warning" header set.

Parameters
request {object} [required] — The request object is used to set the DELETE request parameters

Property Type Required /
Optional

Description

url string required The HTTPS URL being requested.

body array|object|string optional The DELETE data. If the data is passed as an array or
object, it will be automatically JSON serialized and URL
encoded.

headers object optional The HTTPS headers.

Returns
response {object} [read-only] — The NSOA.https.delete function returns the response object.

Property Type Description

body string|object The response body

code string The HTTP response status code.

User Scripting

NSOA Functions 96

Property Type Description

headers object The response headers.

Units Limit
10 units

For more information, see Scripting Governance.

Since
October 12, 2019

Example
This example sends an HTTPS DELETE request, converts the response to a JSON string, displays it in a
confirmation message and stores it as a log entry.

function main(type) {

 var response = NSOA.https.delete({
 url: 'https://postman-echo.com/delete',
 body:'This is expected to be sent back as part of response body.'
 });

 NSOA.meta.alert(JSON.stringify(response));
 NSOA.form.confirmation(JSON.stringify(response));

}

See Code Samples for more examples.

NSOA.https.get(request)
Use this function to send an HTTPS GET request to retrieve data from a server. The data is identified by
a unique URL and parameters can be passed to the server using query string parameters. What data
is returned depends on the implementation of the server. The function will return an error if the URL
requested does not use the HTTPS protocol. The function will follow redirects up to a maximum of 7. The
response must not exceed 1MB in size.

Note: If the client doesn’t start receiving a response from the server within 45 seconds of the
request being fully sent, a connection timeout occurs. If the request times out, a response object is
returned with a standard HTTP Status Code (500) and a "Client-Warning" header set.

Parameters
request {object} [required] — The request object is used to set the GET request parameters

Property Type Required / Optional Description

url string required The HTTPS URL being requested.

User Scripting

NSOA Functions 97

Property Type Required / Optional Description

headers object optional The HTTPS headers.

Returns
response {object} [read-only] — The NSOA.https.get function returns the response object.

Property Type Description

body string|object The GET data.

code string The HTTP response status code.

headers object The response headers.

Units Limit
10 units

For more information, see Scripting Governance.

Since
April 13, 2019

Example
■ This example sends an HTTPS GET request, converts the response to a JSON string, displays it in a

confirmation message and stores it as a log entry.

function main(type) {

 var response = NSOA.https.get({
 url: 'https://postman-echo.com/get?foo1=bar1&foo2=bar2'
 });

 NSOA.meta.alert(JSON.stringify(response));
 NSOA.form.confirmation(JSON.stringify(response));

}

■ This example sends an HTTPS GET request to an endpoint simulating a basic-auth protected endpoint.
It converts the response to a JSON string, stores it as a log entry and displays a confirmation message
if the authentication is succesful.

function main(type) {

 var response = NSOA.https.get({
 url: 'https://postman-echo.com/basic-auth',
 headers: {'Authorization':'Basic cG9zdG1hbjpwYXNzd29yZA=='}
 });
 NSOA.meta.alert(JSON.stringify(response));
 if (response.body.authenticated) {
 NSOA.form.confirmation('Authentification successful');
 }

User Scripting

NSOA Functions 98

}

See Code Samples for more examples.

NSOA.https.patch(request)
Use this function to send an HTTPS PATCH request to update or to make partial modifications to
resources on a server. PATCH requests may support both query string parameters and a request body.
The exact use of PATCH requests and what data is returned depends on the implementation of the
server. The function will return an error if the URL requested does not use the HTTPS protocol. The
function will follow redirects up to a maximum of 7. The response must not exceed 1MB in size.

Note: If the client doesn’t start receiving a response from the server within 45 seconds of the
request being fully sent, a connection timeout occurs. If the request times out, a response object is
returned with a standard HTTP Status Code (500) and a "Client-Warning" header set.

Parameters
request {object} [required] — The request object is used to set the PATCH request parameters

Property Type Required /
Optional

Description

url string required The HTTPS URL being requested.

body array|object|string optional The PATCH data. If the data is passed as an array or
object, it will be automatically JSON serialized and URL
encoded.

headers object optional The HTTPS headers. The MIME type is set automatically
to application/json when body is an array or object.

Returns
response {object} [read-only] — The NSOA.https.patch function returns the response object.

Property Type Description

body object|string The response body.

code string The HTTP response status code.

headers object The response headers.

Units Limit
10 units

For more information, see Scripting Governance.

Since
October 12, 2019

User Scripting

NSOA Functions 99

Example
This example sends form data to an endpoint using the HTTPS PATCH method, converts the response to a
JSON string, displays it in a confirmation message and stores it as a log entry.

function main(type) {

 var response = NSOA.https.patch({
 url: 'https://postman-echo.com/patch,
 body:'This is expected to be sent back as part of response body.'

 });

 NSOA.meta.alert(JSON.stringify(response));
 NSOA.form.confirmation(JSON.stringify(response));

}

See Code Samples for more examples.

NSOA.https.post(request)
Use this function to send an HTTPS POST request to transfer data to a server (and elicit a response).
Parameters can be passed to the server using query string parameters, as well as the request body. What
data is returned depends on the implementation of the server. The function will return an error if the URL
requested does not use the HTTPS protocol. The function will follow redirects up to a maximum of 7. The
response must not exceed 1MB in size.

Note: If the client doesn’t start receiving a response from the server within 45 seconds of the
request being fully sent, a connection timeout occurs. If the request times out, a response object is
returned with a standard HTTP Status Code (500) and a "Client-Warning" header set.

Parameters
request {object} [required] — The request object is used to set the POST request parameters

Property Type Required /
Optional

Description

url string required The HTTPS URL being requested.

body array|object|string optional The POST data. If the data is passed as an array or
object, it will be automatically JSON serialized and URL
encoded.

headers object optional The HTTPS headers. The MIME type is set automatically
to application/json when body is an array or object.

Returns
response {object} [read-only] — The NSOA.https.post function returns the response object.

Property Type Description

body object|string The response body.

code string The HTTP response status code.

User Scripting

NSOA Functions 100

Property Type Description

headers object The response headers.

Units Limit
10 units

For more information, see Scripting Governance.

Since
April 13, 2019

Example
This example sends form data to an endpoint using the HTTPS POST method, converts the response to a
JSON string, displays it in a confirmation message and stores it as a log entry.

function main(type) {

 var response = NSOA.https.post({
 url: 'https://postman-echo.com/post',
 body: 'foo1=bar1&foo2=bar2' ,
 headers: {'Content-Type':'application/x-www-form-urlencoded'}
 });

 NSOA.meta.alert(JSON.stringify(response));
 NSOA.form.confirmation(JSON.stringify(response));

}

See Code Samples for more examples.

NSOA.https.put(request)
Use this function to send an HTTPS PUT request to update or replace data on a server (and elicit a
response). Parameters can be passed to the server using query string parameters, as well as the request
body. What data is returned depends on the implementation of the server. The function will return an
error if the URL requested does not use the HTTPS protocol. The function will follow redirects up to a
maximum of 7. The response must not exceed 1MB in size.

Note: If the client doesn’t start receiving a response from the server within 45 seconds of the
request being fully sent, a connection timeout occurs. If the request times out, a response object is
returned with a standard HTTP Status Code (500) and a "Client-Warning" header set.

Parameters
request {object} [required] — The request object is used to set the PUT request parameters

Property Type Required /
Optional

Description

url string required The HTTPS URL being requested.

User Scripting

NSOA Functions 101

Property Type Required /
Optional

Description

body array|object|string optional The PUT data. If the data is passed as an array or object,
it will be automatically JSON serialized and URL encoded.

headers object optional The HTTPS headers. The MIME type is set automatically
to application/json when body is an array or object.

Returns
response {object} [read-only] — The NSOA.https.put function returns the response object.

Property Type Description

body object|string The response body.

code string The HTTP response status code.

headers object The response headers.

Units Limit
10 units

For more information, see Scripting Governance.

Since
October 12, 2019

Example
This example sends form data to an endpoint using the HTTPS PUT method, converts the response to a
JSON string, displays it in a confirmation message and stores it as a log entry.

function main(type) {

 var response = NSOA.https.put({
 url: 'https://postman-echo.com/put',
 body: 'foo1=bar1&foo2=bar2' ,
 headers: {'Content-Type':'application/x-www-form-urlencoded'}
 });

 NSOA.meta.alert(JSON.stringify(response));
 NSOA.form.confirmation(JSON.stringify(response));

}

See Code Samples for more examples.

NSOA.listview.data(listviewId)
Use this function to read the published list data available to the user running the script. The function
returns a specialized list data iterator (length, index, next, each).

User Scripting

NSOA Functions 102

■ The data read by your scripts is the same as the data you can see in your list at any given time.

■ Accessing published lists using the NSOA.listview.data(listviewId) and NSOA.listview.list() user
scripting functions does not use any of your allocated OData requests.

■ For more information, see Business Intelligence Connector. See also OData Explorer
to browse available OData resources and get started with a sample code, and
NSOA.report.data(reportId,optionalParameters) to read published report data.

Tip: Use published lists like custom queries and read only the necessary list data in your OpenAir
scripts.

Important: Both form and scheduled scripts support the NSOA.listview.data(listviewId)
function. However, the number of items you can process in form scripts is restricted by the
scripting governance time limits. The function is best suited for reading published list data in
scheduled scripts, which allow up to 1 hour of JS runtime and 1 hour of web services API call time.
For more information about scripting limits, see Scripting Governance.

Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Parameters
listviewId — the published list OData resource ID (integer).

Returns
A specialized list data iterator (length, index, next, each).

■ length — number of items

■ index — index of last returned item

■ next — returns either the next item from the iterator or “undefined” when the iterator is done

■ each — calls the specified function for each item in the iterator

Units Limit
10 units for each 1000-item page loaded into iterator on-demand. Consumes 10 units for the first fetch
even when the page is empty.

Since
April 18, 2020

Example

// get the iterator for listview data, it has following members

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

NSOA Functions 103

// it consumes 10 units for each 1000-item page loaded into iterator on-demand
// * 'length' - number of items
// * 'index' - index of last returned item
// * 'next' - returns next item from iterator or undefined when iterator is done
// * 'each' - calls specified function for each item in the iterator
var iterator = NSOA.listview.data(7);

// get number of listview records
var row_count = iterator.length;

// grab first two records
var first = iterator.next();
var second = iterator.next();

// process rest of the listview
iterator.each(function(record, index) {

 // search for particular name
 if (record.Name === "Nathan Brown") {

 // set the field value
 NSOA.form.setValue("remaining_budget__c", record["Remaining Budget"]);

 // stop iterating
 return false;
 }
});

NSOA.listview.list()
Use this function to read the list of published lists available from the OpenAir OData service. Returns the
list of published lists.

■ Accessing published lists using the NSOA.listview.data(listviewId) and NSOA.listview.list() user
scripting functions does not use any of your allocated OData requests.

■ For more information, see Business Intelligence Connector. See also NSOA.report.list() to read the list
of published reports.

Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Parameters
N/A

Returns
The list of published lists. Each item in the list has the following properties:

■ ID — The published list OData resource ID

■ Name — The name of the list

■ Last published — The date and time when the list was last published

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

NSOA Functions 104

Important: The Last published property will be Last_published with an underscore
instead of the space if the optional feature Replace Non-Alphanumeric Characters with
Underscores in Column Titles and Metadata is enabled for your account. Accommodate
both possibilities in your scripts to ensure your scripts continue work whether the feature is
enabled or not.

Units Limit
1 unit

Since
April 18, 2020

Example

// get the list of published listviews
var listviews = NSOA.listview.list();

// each item in the list has following properties
// * 'ID'
// * 'Name'
// * 'Last_published'

// loop through all published listviews and find given listview ID
var i;
var listviewId;
for (i = 0; i < listviews.length; i++) {
 if (listviews[i].Name === 'My Approved Bookings') {
 listviewId = listviews[i].ID;
 break;
 }
}

// if listview ID was found get its data
if (listviewId > 0) {
 var rows = NSOA.listview.data(listviewId);

 // process all listview rows
}

NSOA.meta.alert(message)
Use this function to store an Info log entry. This is a short version of NSOA.meta.log(severity, message).

Parameters
message {string} [required] — The message to be written to the log.

Returns
True if the function was successful and false otherwise.

User Scripting

NSOA Functions 105

Units Limit
4 units

For more information, see Scripting Governance.

Since
August 17, 2013

Example
This sample writes the ‘info’ severity message 'Form error - travel date is after receipt date' to the log.

 NSOA.meta.alert('Form error - travel date is after receipt date');

See also NSOA.meta.log(severity, message).

See Code Samples for more examples.

NSOA.meta.log(severity, message)
Use this function to store a log entry. The supported severities match those of the Log4j project.

The log indicates:

■ Severity — The supplied severity: “fatal”, “error”, “warning”, “info”, “debug”, or “trace”.

■ Timestamp — The time the message was logged.

■ Generated by — For example, whether the message was generated by your script or by OpenAir

■ Message — The full message text.

■ User — For example, the user that was saving the form when the error occurred.

Note: If you have a syntax error or a runtime error you will see an error in the log generated by
OpenAir.

See also Form script deployment logs.

Parameters
■ severity {string} [required] — The severity of the message: “fatal”, “error”, “warning”, “info”, “debug”, or

“trace”.

User Scripting

NSOA Functions 106

Note: The “debug” and “trace” messages are only executed in test mode, see Testing and
Debugging. The “debug”, and “trace” messages do not consume Scripting Governance units
but are limited to a maximum of 1000 per script.

■ message {string} [required] — The message to be written to the log.

Returns
True if the function was successful and false otherwise.

Units Limit
4 units

For more information, see Scripting Governance.

Since
August 17, 2013

Example
This sample writes the ‘error’ severity message 'Form error - travel date is after receipt date' to the log.

 NSOA.meta.log('error', 'Form error - travel date is after receipt date');

See also NSOA.meta.alert(message).

See Code Samples for more examples.

NSOA.meta.sendMail(message)
Use this function to send email messages from a form, library, or scheduled script. Form scripts are
allowed to send a maximum of 3 emails and scheduled scripts a maximum of 100 email by Scripting
Governance.

Parameters
msg {object} [required] — An email message object with the following properties:

■ to — [optional] array of OpenAir User IDs / email addresses.

■ cc — [optional] array of OpenAir User IDs / email addresses.

■ bcc — [optional] array of OpenAir User IDs / email addresses.

Important: At least one of to, cc, or bcc is required.

■ format — [optional] if “HTML” the body will be treated as HTML. If this is set to any other value or
omitted then the body will be treated as plain text.

User Scripting

NSOA Functions 107

■ subject — [optional] string holding the email subject. The subject is trimmed to the first line if carriage
return characters are used.

Important: At least one of subject or body is required.

■ body — [optional] string holding the email body.

Important: There is a maximum body length set for your emails sent by form and
scheduled scripts. Email messages with bodies above that maximum body length are not sent.

The maximum body length is set to 30,000 characters by default and can be changed to suit
your requirements. To review or to increase the maximum body length set for your account,
contact OpenAir Customer Support.

Tip: If the format is set to ”HTML” any tags you can place within the <body></body> section
of an HTML file are valid.

■ author — [optional] use to set one OpenAir user ID as the author of the emails.

See Code Samples for more examples.

Returns
True if the email was placed in the queue for sending and false otherwise.

Units Limit
10 units

For more information, see Scripting Governance.

Since
October 17, 2015

Example
■ This sends a plain text email.

 // Send a plain text message
 var msg = {
 to: ["mcollins@example.com"],
 cc: ["jadmin@example.com"],
 subject: "Script alert",
 body: "Form saved"
 };

 NSOA.meta.sendMail(msg);

■ This sends an HTML email.

 // Send an HTML message

User Scripting

NSOA Functions 108

 var msg = {
 to: ["mcollins@example.com"],
 subject: "Project Assignment",
 format: "HTML",
 body: "Client: Altima Technologies</br>" +
 "Project: CRM Implementation</br>" +
 "Project Manager: Collins, Marc"
 };

 NSOA.meta.sendMail(msg);

See Code Samples for more examples.

NSOA.NSConnector.integrateAllNow()
This function lets you trigger the integration to run for all active integration workflows from your
scheduled scripts. It is equivalent to clicking the Run button on the OpenAir NetSuite Connector screen
and selecting all workflows. For more information about running the integration, see NetSuite
Integration.

Important: This function:

■ Must be called from a scheduled script.

■ Cannot be called only once in the same scheduled script.

■ Cannot be called if the NSOA.NSConnector.integrateWorkflowGroup(name) is called in the same
scheduled script. See NSOA.NSConnector.integrateWorkflowGroup(name)

Parameters
(none)

Returns
Boolean true if integration was triggered and false if integration was not triggered.

Units Limit
1000 units

For more information, see Scripting Governance.

Since
April 16, 2016

Example
This example triggers the NetSuite integration for all fields using a scheduled script.

User Scripting

https://app.openair.com/download/NetSuiteIntegration.pdf
https://app.openair.com/download/NetSuiteIntegration.pdf

NSOA Functions 109

function main() {
 var records = NSOA.wsapi.read(...);

 // check if result is OK
 if (!records || !records[0])
 return;

 // trigger NetSuite integration if there is no error and more than 50 records
 else if (records[0].errors === null && records[0].objects &&records[0].objects.length > 50) {
 NSOA.NSConnector.integrateAllNow();
 }
}

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.NSConnector.integrateRecord()
This function let you export a single OpenAir record to NetSuite from your form scripts. It is equivalent
to clicking the Export/Send links in the Tips menu for a selected record. For more information about
exporting a single record from OpenAir to NetSuite, see NetSuite Integration.

This function applies only to the OpenAir records available for export to NetSuite. It will perform an action
only if called for one of the following forms:

■ Envelope

■ Invoice

■ Revenue Recognition Transaction

■ Customer

■ Timesheet

■ Purchase Request

■ Project

■ Project Task

Important: This function:

■ Must be called from a form script.

■ Allows a maximum of one call per script.

■ Performs no action and returns false if called for any form other than those listed above.

Parameters
(none)

Returns
Boolean true if integration was triggered and false if integration was not triggered.

User Scripting

https://app.openair.com/download/NetSuiteIntegration.pdf

NSOA Functions 110

Units Limit
10 units

For more information, see Scripting Governance.

Since
April 16, 2016

Example
This example presents a common use case for after-approval events with envelopes.

function main() {
 // integrate current form object to NetSuite
 NSOA.NSConnector.integrateRecord();

See Code Samples for more examples.

NSOA.NSConnector.integrateWorkflowGroup(name)
OpenAir NetSuite Connector lets you create workflow groups to include only the integration workflows
you need in each scheduled integration run. For more information about workflow groups, see

NetSuite Integration.

This function lets you trigger the integration to run for a specific workflow group from your user scripts.

Important: This function:

■ Must be called from a scheduled script.

■ Cannot be called twice for the same workflow group in the same scheduled script.

■ Cannot be called if the NSOA.NSConnector.integrateAllNow() is called in the same scheduled
script. See NSOA.NSConnector.integrateAllNow()

Parameters
name (string) — The name of the workflow group. It must match exactly the name of an existing workflow
group.

Returns
Boolean true if integration was triggered and false if integration was not triggered.

Units Limit
1000 units

For more information, see Scripting Governance.

User Scripting

https://app.openair.com/download/NetSuiteIntegration.pdf

NSOA Functions 111

Since
■ October 9, 2021

Example
This example triggers the NetSuite integration for the workflow group ’ Timesheets Custom Export‘ using
a scheduled script.

function main() {
 NSOA.NSConnector.integrateWorkflowGroup('Timesheets Custom Export');

}

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.record.<complex type>([id])
This set of functions is used to create OpenAir Complex Type objects. If the Internal ID is passed as a
parameter then the object will be populated accordingly. The following objects are supported:

oaAddress oaEstimatephase oaPurchaser

oaAgreement oaEvent oaPurchaserequest

oaApproval oaHierarchy oaRatecard

oaBooking oaHierarchyNode oaReimbursement

oaBookingType oaHistory oaRequest_item

oaBudget oaImportExport oaResourceprofile

oaBudgetAllocation oaInvoice oaResourceprofile_type

oaCategory oaItem oaRevenue_recognition_rule

oaCcrate oaJobcode oaRevenue_recognition_rule_amount

oaCompany oaLeave_accrual_rule oaRevenue_recognition_transaction

oaContact oaLeave_accrual_rule_to_user oaSchedulerequest

oaCostcenter oaLeave_accrual_transaction oaSchedulerequest_item

oaCurrency oaLoadedCost oaSlip

oaCurrencyrate oaModule oaSlipstage

oaCustField oaPayment oaSwitch

oaCustomer oaPaymentterms oaTask

oaCustomerpo oaPaymenttype oaTaskTimecard

oaCustomerpo_to_project oaPayrolltype oaTaxLocation

oaCustomField oaPreference oaTaxRate

User Scripting

NSOA Functions 112

oaDate oaProduct oaTerm

oaDeal oaProject oaTicket

oaDealcontact oaProjectbillingrule oaTimecard

oaDealschedule oaProjectbillingtransaction oaTimesheet

oaDepartment oaProjectlocation oaTimetype

oaEntitytag oaProjectstage oaTodo

oaEnvelope oaProjecttask oaUprate

oaError oaProjecttask_type oaUser

oaEstimate oaProjecttaskassign oaUserWorkschedule

oaEstimateadjustment oaProposal oaVendor

oaEstimateexpense oaProposalblock oaWorkspacelink

oaEstimatelabor oaPurchase_item oaWorkspaceuser

oaEstimatemarkup oaPurchaseorder

Tip: You can lookup the OpenAir Complex Types and their properties from the following link
https://app.openair.com/wsdl.pl.

OpenAir Complex Type objects are required in the following wsapi functions:

■ NSOA.wsapi.add(objects)
■ NSOA.wsapi.delete(objects)
■ NSOA.wsapi.modify(attributes, objects)
■ NSOA.wsapi.read(readRequest)
■ NSOA.wsapi.upsert(attributes,objects)

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

Parameters
id {var} [optional] — If specified, this (internal) ID will be used to populate the new object.

Returns
OpenAir Complex Type object.

Units Limit
0 units

For more information, see Scripting Governance.

Since
November 16, 2013

User Scripting

https://app.openair.com/wsdl.pl
https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 113

Example
■ This sample creates a customer object populates with the current values in the database.

 // Create customer object populated with data for ID = 66
 var customer = NSOA.record.oaCustomer(66);

■ This sample creates a new category in OpenAir.

 // Create a new category object
 var category = new NSOA.record.oaCategory(); // empty category
 category.name = "New Category";
 category.cost_centerid = "123";
 category.currency = "USD";

 // Invoke the add call
 var results = NSOA.wsapi.add([category]);

See also NSOA.wsapi.add(objects).

See Code Samples for more examples.

NSOA.report.data(reportId,optionalParameters)
Use this function to read published report data available to the user executing the script. The function
returns a specialized report data iterator (length, index, next, each).

For more information, see Business Intelligence Connector. See also OData Explorer to browse available
OData resources and get started with a sample code, and NSOA.listview.data(listviewId) to read published
list data.

Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Parameters
■ reportId — the ID number of the report (integer).

■ (optional) optionalParameters — an object with the following properties:

□ (optional) select — the list of columns to return (string array).

□ (optional) filter — a logical expression defining the criteria items must match to be included in
the response (string).

For information about column names and filter expression syntax and guidelines, see Business
Intelligence Connector.

Returns
■ A specialized report data iterator (length, index, next, each).

□ length — number of items

□ index — index of last returned item

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf
https://app.openair.com/download/BusinessIntelligenceConnector.pdf
https://app.openair.com/download/BusinessIntelligenceConnector.pdf

NSOA Functions 114

□ next — returns next item from iterator or undefined when iterator is done

□ each — calls specified function for each item in the iterator

Units Limit
10 units for each 1000-item page loaded into iterator on-demand. Consumes 10 units for the first fetch
even when the page is empty.

Since
October 13, 2018

Example

// get the iterator for report data; it has following members
// it consumes 10 units for each 1000-item page loaded into iterator on-demand
// * 'length' - number of items
// * 'index' - index of last returned item
// * 'next' - returns next item from iterator or undefined when iterator is done
// * 'each' - calls specified function for each item in the iterator
//
// optionalParameters:
// * 'select' - list of field names to be returned
// * 'filter' - limiting condition
var iterator = NSOA.report.data(
 7,
 {
 select: ["Name", "Remaining Budget"],
 filter: "Name eq 'Nathan Brown'"
 }
);

// get number of records published
var row_count = iterator.length;

// grab first two records
var first = iterator.next();
var second = iterator.next();

// process rest of the report
iterator.each(function(record, index) {

 // search for particular name
 if (record.Name === "Nathan Brown") {

 // set the field value
 NSOA.form.setValue("remaining_budget__c", record["Remaining Budget"]);

 // stop iterating
 return false;
 }
});

NSOA.report.list()
Use this function to read the list of reports published using the Business Intelligence Connector feature.
The list contains the same data as the “list” report available in your business intelligence tool.

For more information, see Business Intelligence Connector. See also NSOA.listview.list() to read the list of
published lists.

User Scripting

NSOA Functions 115

Note: The Business Intelligence Connector feature must be enabled for your account to use
NSOA.listview and NSOA.report functions. The Business Intelligence Connector feature is a
licensed add-on. To enable this feature, contact your OpenAir account manager.

For more information about publishing lists and reports to the OpenAir OData service, see
Business Intelligence Connector.

Parameters
N/A

Returns
The list of published reports. Each item in the list has the following properties:

■ ID — The report ID

■ Name — The name of the report

■ Rows — The number of rows of data in the report

■ PublishType — The scope of use specified for the published report.

■ Last published — The date the report was last published

Important: The Last published property will be Last_published with an underscore
instead of the space if the optional feature Replace Non-Alphanumeric Characters with
Underscores in Column Titles and Metadata is enabled for your account. Accommodate
both possibilities in your scripts to ensure your scripts continue work whether the feature is
enabled or not.

Units Limit
1 unit

Since
October 13, 2018

Example

// get the list of published reports
var reports = NSOA.report.list();

// each item in the list has following properties
// * 'ID'
// * 'Name'
// * 'Rows'
// * 'Last published'

// loop through all published reports and find given report ID
var i;
var reportId=0;
for (i = 0; i < reports.length; i++) {
 if (reports[i].Name === 'My Approved Bookings') {
 reportId = reports[i].ID;

User Scripting

https://app.openair.com/download/BusinessIntelligenceConnector.pdf

NSOA Functions 116

 break;
 }
}

// if report ID was found get its data
if (reportId > 0) {
 var rows = NSOA.report.data(reportId);

 // process all report rows
}

NSOA.wsapi.add(objects)
Use this function to add data to OpenAir. The function returns an error if more than 1000 objects are
passed in.

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
objects {var} [required] — Array of OpenAir Complex Type objects, see NSOA.record.<complex type>([id]).

Returns
Array of UpdateResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample creates a new category in OpenAir.

 // Define a category object to create in OpenAir
 var category = new NSOA.record.oaCategory();
 category.name = "New Category";
 category.cost_centerid = "123";
 category.currency = "USD";

 // Invoke the add call
 var results = NSOA.wsapi.add([category]);

 // Get the new ID

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 117

 var id = results[0].id;

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.wsapi.approve(approveRequest)
Use this function to approve bookings, timesheets, invoices, and envelopes. It can take an array of up to
1,000 approve request objects.

Parameters
approveRequest{object} [required] — approveRequest object

Returns
Array of ApprovalResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information see Scripting Governance.

Since
October 15, 2016

Example
In this example, the script creates the approval object, then prepares the timesheet with timesheet ID 45
for approval, defines the approve requests, and invokes the action call.

// Create the approval object
var approvalObj = new NSOA.record.oaApproval();
approvalObj.notes = "approve from scripting";

// Prepare the record for approve
var timesheetToProcess = new NSOA.record.oaTimesheet();
timesheetToProcess.id = 45;

// Define the approve requests
var requests = [{
 approve: timesheetToProcess,
 attributes: [], // approve attrributes are optional
 approval: approvalObj
}];

// Invoke the action call
var results = NSOA.wsapi.approve(requests);

User Scripting

NSOA Functions 118

Note: This simple example does not show error checking, see Handling Approval Errors

See Code Samples for more examples.

NSOA.wsapi.delete(objects)
Use this function to delete data in OpenAir based on an internal ID. The function returns an error if more
than 1000 objects are passed in

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
objects {var} [required] — Array of OpenAir Complex Type objects, see NSOA.record.<complex type>([id]).

Returns
Array of UpdateResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample deletes a customer from OpenAir.

 // Delete customer with internal ID 66
 var customer = new NSOA.record.oaCustomer();
 customer.id = 66;

 // Invoke the delete call
 var results = NSOA.wsapi.delete([customer]);

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.wsapi.disableFilterSet([flag])
Use this function to check, enable, or disable user filter sets.

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 119

Note: Scripts are executed within the context of the user who is signed in. This means that the
user filter sets for the signed in user will be applied unless disabled.

Tip: Disabling user filter sets allows you to write more generic scripts.

Parameters
flag {Boolean} [optional] — If true is passed the user filter sets are disabled, if false is passed the user
filter sets are enabled, and if no parameter is passed the function returns the current filter setting.

Returns
Boolean true if filter sets are disabled and false if user filter sets are enabled.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
November 16, 2013

Example
■ Disable user filter sets on .wsapi requests.

 NSOA.wsapi.disableFilterSet(true);

■ Enable user filterset on .wsapi requests.

 NSOA.wsapi.disableFilterSet(false);

Note: This the default OpenAir behavior, that is, user filter sets enabled.

■ Return the Boolean state (without changing setting)

 if(NSOA.wsapi.disableFilterSet()) {
 // The user filter sets are disabled
 }

See Code Samples for more examples.

NSOA.wsapi.enableLog([flag])
Use this function to see the SOAP API request and response messages generated by NSOA.wsapi function
calls.

User Scripting

NSOA Functions 120

Every call between enableLog(true) and enableLog(false) is logged and available for viewing in the same
place as the NSOA.meta.log(severity, message) function.

Note: This function only works in test mode and is ignored in production due to the size of the
messages. See Testing and Debugging.

Parameters
flag {Boolean} [optional] — If true is passed then wsapi logging is enabled, if false is passed then wsapi
logging is disabled, and if no parameter is passed the function returns the current wsapi logging setting.

Returns
Boolean true if wsapi logging is enabled and false if wsapi logging is disabled.

Units Limit
1 unit

For more information, see Scripting Governance.

Since
February 15, 2014

Example
■ Enable wsapi logging.

 NSOA.wsapi.enableLog(true);

■ Disable wsapi logging.

 NSOA.wsapi.enableLog(false);

Note: This is the default OpenAir behavior, that is, wsapi logging disabled.

■ Returns the Boolean state (without changing setting)

 if(NSOA.wsapi.enableLog()) {
 // wsapi logging is enabled
 }

User Scripting

NSOA Functions 121

See Code Samples for more examples.

NSOA.wsapi.modify(attributes, objects)
Use this function to modify data in OpenAir. The function returns an error if more than 1000 objects are
passed in.

You need to specify the internal ID for each object passed, as well as the properties you want to modify.

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
■ attributes {var} [required] — Array of Attribute objects.
■ objects {var} [required] — Array of OpenAir Complex Type objects, see NSOA.record.<complex

type>([id]).

Returns
Array of UpdateResult objects.

Units Limit
40 units

+20 for each additional object passed

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample changes a customer’s email address in OpenAir.

 // Modify customer's email address
 var customer = new NSOA.record.oaCustomer();
 customer.id = 37;
 customer.addr_email = "newest@example.com";

 // Not attributes required
 var attributes = [];

 // Invoke the modify call
 var results = NSOA.wsapi.modify(attributes, [customer]);

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 122

NSOA.wsapi.read(readRequest)
Use this function to retrieve data from OpenAir. The function returns an error if the response would
exceed 1000 objects.

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
readRequest {object} [required] — Array of ReadRequest objects.

Returns
Array of ReadResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample creates a new category in OpenAir.

 // Create the issue object
 var issue = new NSOA.record.oaIssue();
 issue.project_id = NSOA.form.getValue('id');
 issue.issue_stage_id = 1;

 // Define the read request
 var readRequest = {
 type : "Issue",
 method : "equal to", // return only records that match search criteria
 fields : "id, date", // specify fields to be returned
 attributes : [// Limit attribute is required; type is Attribute
 {
 name : "limit",
 value : "10"
 }
],
 objects : [// One object with search criteria; type implied by rr 'type'
 issue
]
 };

 // Invoke the read call
 var results = NSOA.wsapi.read(readRequest);

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 123

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.wsapi.reject(rejectRequest)
Use this function to reject bookings, timesheets, invoices, and envelopes. It can take an array of up to
1,000 reject request objects.

Parameters
rejectRequest{object} [required] — rejectRequest object

Returns
Array of ApprovalResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information see Scripting Governance.

Since
October 15, 2016

Example
In this example, the script creates the approval object, then prepares the timesheet with timesheet ID 45
for rejection, defines the reject requests, and invokes the action call.

// Create the approval object
var approvalObj = new NSOA.record.oaApproval();
approvalObj.notes = "reject from scripting";

// Prepare the record for reject
var timesheetToProcess = new NSOA.record.oaTimesheet();
timesheetToProcess.id = 45;

// Define the reject requests
var requests = [{
 reject: timesheetToProcess,
 attributes: [], // reject attrributes are optional
 approval: approvalObj
}];

// Invoke the action call
var results = NSOA.wsapi.reject(requests);

Note: This simple example does not show error checking, see Handling Approval Errors

See Code Samples for more examples.

User Scripting

NSOA Functions 124

NSOA.wsapi.remainingTime()
Use this function to determine how much time your script has remaining to execute inside wsapi
functions before it is terminated by Scripting Governance.

You can use this function to help you create more efficient scripts and also to take corrective action if a
script is at risk of consuming excessive resources.

Parameters
(none)

Returns
Amount of time remaining allowed for the script to execute inside wsapi calls in milliseconds.

Tip: Always try to reduce the amount of time your scripts take to execute.

Units Limit
0 units

For more information, see Scripting Governance.

Since
October 18, 2014

Example
This example logs the amount of wsapi time remaining for the script to execute in milliseconds.

 NSOA.meta.log('info', 'Remaining wsapi time: '
 + NSOA.wsapi.remainingTime() + ' milliseconds');

See also NSOA.context.remainingTime().

For more information see Scripting Governance.

NSOA.wsapi.submit(submitRequest)
Use this function to submit bookings, timesheets, invoices, and envelopes. It can take an array of up to
1,000 submit request objects.

Parameters
submitRequest{object} [required] — submitRequest object

User Scripting

NSOA Functions 125

Returns
Array of ApprovalResult objects.

Units Limit
20 units

+10 for each additional object passed

For more information see Scripting Governance.

Since
October 15, 2016

Example
In this example, the script creates the approval object, then prepares the timesheet with timesheet ID 45
for submitting, defines the submit requests, and invokes the action call.

// Create the approval object
var approvalObj = new NSOA.record.oaApproval();
approvalObj.notes = "submit from scripting";

// Prepare the record for submit
var timesheetToProcess = new NSOA.record.oaTimesheet();
timesheetToProcess.id = 45;

// Define the submit requests
var requests = [{
 submit: timesheetToProcess,
 attributes: [], // submit attributes are optional
 approval: approvalObj
}];

// Invoke the action call
var results = NSOA.wsapi.submit(requests);

Note: This simple example does not show error checking, see Handling Approval Errors

See Code Samples for more examples.

NSOA.wsapi.unapprove(unapproveRequest)
Use this function to unapprove bookings, timesheets, invoices, and envelopes. It can take an array of up
to 1,000 unapprove request objects.

Parameters
unapproveRequest{object} [required] — unapproveRequest object

Returns
Array of ApprovalResult objects.

User Scripting

NSOA Functions 126

Units Limit
20 units

+10 for each additional object passed

For more information see Scripting Governance.

Since
October 15, 2016

Example
In this example, the script creates the approval object, then prepares the timesheet with timesheet ID 45
for unapproval, defines the unapprove requests, and invokes the action call.

// Create the approval object
var approvalObj = new NSOA.record.oaApproval();
approvalObj.notes = "unapprove from scripting";

// Prepare the record for unapprove
var timesheetToProcess = new NSOA.record.oaTimesheet();
timesheetToProcess.id = 45;

// Define the unapprove requests
var requests = [{
 unapprove: timesheetToProcess,
 attributes: [], // unapprove attrributes are optional
 approval: approvalObj
}];

// Invoke the action call
var results = NSOA.wsapi.unapprove(requests);

Note: This simple example does not show error checking, see Handling Approval Errors

See Code Samples for more examples.

NSOA.wsapi.upsert(attributes,objects)
Use this function to add or modify data in OpenAir based on lookup attributes. The function returns an
error if more than 1000 objects are passed in.

You can use an externalid field as a foreign key and add a record without querying first for an internal ID.

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
■ attributes {var} [required] — Array of Attribute objects.

■ objects {var} [required] — Array of OpenAir Complex Type objects, see NSOA.record.<complex
type>([id]).

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 127

Returns
Array of UpdateResult objects.

Units Limit
40 units

+20 for each additional object passed

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample creates a new category in OpenAir.

 //Define a category object to create/update in OpenAir
 var category = new NSOA.record.oaCategory();
 category.name = "Updated Category";
 category.externalid = "555";

 // Specify that the lookup is done by external_id and not by (default) internal ID
 var attribute = {
 name : "lookup",
 value : "externalid"
 };

 // Invoke the upsert call
 var results = NSOA.wsapi.upsert([attribute], [category]);

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

NSOA.wsapi.whoami()
Use this function to add or modify data in OpenAir based on lookup attributes. The function returns an
oaUser object, see Who Am I.

Note: For more information about the SOAP API (Web Services), see XML API & SOAP API.

See also Making SOAP Calls.

Parameters
(none)

Returns
An oaUser object.

User Scripting

https://app.openair.com/download/XMLAndSOAPAPI.pdf

NSOA Functions 128

Units Limit
1 unit

For more information, see Scripting Governance.

Since
November 16, 2013

Example
This sample logs the name of the user running the script.

 function logUser() {
 var user = NSOA.wsapi.whoami();
 NSOA.meta.alert("User ID " + user.id + " saved this record");
 }

Note: This simple example does not show error checking, see Handling SOAP Errors.

See Code Samples for more examples.

Code Samples
The following code samples are provided:

■ Comparing Date Fields
■ Validating Numeric Fields
■ Requiring Minimum Values
■ Creating Error Log Entries
■ Sending email
■ SOAP API — Prevent closing a project with an open issue
■ SOAP API — Append notes to a project
■ SOAP API — Require task assignment
■ Submitting a Timesheet for Approval
■ Outbound Calling — SOAP Call Using HTTPS POST
■ Outbound Calling — Post a Slack Message
■ Outbound Calling — HTTPS GET with Authorization

See also Real World Use Cases.

Comparing Date Fields
// compare two date fields on a receipt
function validateTravelDates() {
 var receiptDate = NSOA.form.getValue('date');
 var travelDate = NSOA.form.getValue('TravelDate__c');

User Scripting

Code Samples 129

 if (receiptDate < travelDate) {
 NSOA.form.error('TravelDate__c', 'The travel date cannot be after the receipt date!');
 }
}

See also:

■ NSOA.form.getValue(field)

■ NSOA.form.error(field, message)

Validating Numeric Fields
// validate a number entered into a custom numeric field
function projectRating() {
 var rating = NSOA.form.getValue('ProjectRating__c');

 if (rating < 1 || rating > 5) {
 NSOA.form.error('ProjectRating__c', 'Ratings must be whole numbers between 1 and 5.');
 }
}

See also:

■ NSOA.form.getValue(field)

■ NSOA.form.error(field, message)

Requiring Minimum Values
// require notes on all airfare exceeding $1,000 dollars
function airfareCost() {
 var cost = NSOA.form.getValue('cost');
 var notes = NSOA.form.getValue('notes');
 var item = NSOA.form.getValue('item_id');

 if (cost > 1000 && notes.length < 1 && item == '4') {

 NSOA.form.error('notes', 'Notes are required for Airfare exceeding $1,000.');
 }
}

See also:

■ NSOA.form.getValue(field)

■ NSOA.form.error(field, message)

Creating Error Log Entries
// add an error log entry to the validateTravelDates() function above
function validateTravelDates() {
 var receiptDate = NSOA.form.getValue('date');
 var travelDate = NSOA.form.getValue('TravelDate__c');

 if (receiptDate < travelDate) {
 NSOA.form.error('TravelDate__c', 'The travel date cannot be after the receipt date!');
 NSOA.meta.log('error', 'Form error - travel date ' + travelDate + ' is after receipt date ' + receiptDate);
 }

User Scripting

Code Samples 130

}

See also:

■ NSOA.form.getValue(field)

■ NSOA.form.error(field, message)

■ NSOA.meta.log(severity, message)

Sending email
function sendAlert() {
 // TODO Add Your Code Here

 // TODO Handle Errors

 // Notify The Owner
 var me = NSOA.wsapi.whoami();
 var msg = {
 to: [me.id],
 subject: "Script completed",
 format: "HTML",
 body: "Your script completed
" +
 "<hr/><i>Automatically sent by OpenAir</i>"
 };

 NSOA.meta.sendMail(msg);
}

See also NSOA.meta.sendMail(message)

SOAP API — Prevent closing a project with an open issue
function test_prevent_project_close_with_open_issue() {
 var project_stage_id = NSOA.form.getValue('project_stage_id');
 if (project_stage_id != 4) // if new stage is not closed, skip check
 return;

 //Read request
 var issue = new NSOA.record.oaIssue();
 issue.project_id = NSOA.form.getValue('id');
 issue.issue_stage_id = 1;
 var readRequest = {
 type : "Issue",
 method : "equal to", // return only records that match search criteria
 fields : "id, date", // specify fields to be returned
 attributes : [// Limit attribute is required; type is Attribute
 {
 name : "limit",
 value : "10"
 }
],
 objects : [// One object with search criteria; type implied by rr 'type'
 issue
]
 };
 var arrayOfreadResult = NSOA.wsapi.read(readRequest);
 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error analyzing project. Contact account administrator.");
 else if (arrayOfreadResult[0].errors === null && arrayOfreadResult[0].objects)
 arrayOfreadResult[0].objects.forEach(
 function(o) {
 NSOA.form.error('', "Can't close project with open issues.");
 }

User Scripting

Code Samples 131

);
}

See also:

■ NSOA.form.getValue(field)
■ NSOA.record.<complex type>([id])
■ NSOA.wsapi.read(readRequest)
■ NSOA.form.error(field, message)

SOAP API — Append notes to a project
 // This is called on the "After save" event for the Project form
 function append_to_project_notes() {
 var newr = NSOA.form.getNewRecord();

 var project = new NSOA.record.oaProject();
 project.id = newr.id;
 project.notes = newr.notes + "\nAppended to notes: " + (new Date().toString());

 NSOA.wsapi.disableFilterSet(true);
 var arrayOfupdateResult = NSOA.wsapi.modify([], [project]);
 NSOA.meta.alert("Got modify status: " + arrayOfupdateResult[0].status);
}

See also:

■ NSOA.form.getNewRecord()
■ NSOA.record.<complex type>([id])
■ NSOA.wsapi.modify(attributes, objects)
■ NSOA.meta.alert(message)

SOAP API — Require task assignment
// Add form error if user is not assigned to project task to which they're about to be booked.
function require_task_assignment() {

 // Prepare read query
 var pta = new NSOA.record.oaProjecttaskassign();
 pta.projecttaskid = NSOA.form.getValue('project_task_id');
 pta.userid = NSOA.form.getValue('user_id');

 var readRequest = {
 type : "Projecttaskassign",
 method : "equal to", // return only records that match search criteria
 fields : "id", // specify fields to be returned
 attributes : [// Limit attribute is required; type is Attribute
 {
 name : "limit",
 value : "1"
 }
],
 objects : [// One object with search criteria
 pta
]
 };

 // Run query
 NSOA.wsapi.disableFilterSet(true); // disable the current user's filter for read query
 var result = NSOA.wsapi.read(readRequest);

User Scripting

Code Samples 132

 // Check query results
 if (!result || !result[0])
 NSOA.form.error('', "Internal error analyzing booking. Contact account administrator.");
 else if (result[0].errors !== null || result[0].objects === null || result[0].objects.length === 0)
 NSOA.form.error('_user_id', "Can't book this user without being assigned to selected project task.");
}

See also:

■ NSOA.record.<complex type>([id])
■ NSOA.form.getValue(field)
■ NSOA.wsapi.read(readRequest)
■ NSOA.wsapi.disableFilterSet([flag])
■ NSOA.form.error(field, message)

Submitting a Timesheet for Approval
In the case below, the following timesheet submission rules have been configured. When submitting a
timesheet (in this example, with timesheet ID 45), if any warnings occur, (for example, if the minimum
number of hours on the timesheet is less than 10), the submit call from the script would fail. If you want
the submit call to occur despite the warnings, you would need to pass the “ignore_warnings” attribute as
shown in the code example below.

function main(type) {

 // Create the approval object
 var approvalObj = new NSOA.record.oaApproval();
 approvalObj.notes = "submit from scripting";

 // Prepare the record for submit
 var timesheetToProcess = new NSOA.record.oaTimesheet();
 timesheetToProcess.id = 45;

 // Ignore any warnings
 var ignore_warnings = {
 name : "submit_warning",
 value : "1"
 };

 // Define the submit requests
 var requests = [{
 submit: timesheetToProcess,
 attributes: [ignore_warnings],
 approval: approvalObj
 }];

 // Invoke the action call
 var results = NSOA.wsapi.submit(requests);

}

See also:

User Scripting

Code Samples 133

■ NSOA.record.<complex type>([id])

■ NSOA.wsapi.submit(submitRequest)

Outbound Calling — SOAP Call Using HTTPS POST
In this code sample, the NSOA.https.post function is used to make a SOAP call. An object is created with
url, headers and body properties. The object is then passed to the NSOA.https.post function and the
response returned.

Note: Refer to the API you are calling for details on the expected request and response formats.

/**
* SOAP call to get data center URLs using HTTPS POST method.
* @param {Str} accountID ID of a NetSuite account.
* @return {Obj} An https.post response object.
*/
function getDataCenterUrls(accountID){

 var url = 'https://webservices.netsuite.com/services/NetSuitePort_2017_1';

 var headers = {
 'SOAPAction': 'getDataCenterUrls',
 'Content-type': 'application/javascript'
 };

 var body = '<?xml version="1.0" encoding="UTF-8"?>' +
 '<soapenv:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:platformMsgs="urn:messages_2017_1.platform.webservices.netsuit
e.com">' +
 '<soapenv:Body>'+
 '<getDataCenterUrls xsi:type="platformMsgs:GetDataCenterUrlsRequest">'+
 '<account xsi:type="xsd:string">' + accountID + '</account>'+
 '</getDataCenterUrls>'+
 '</soapenv:Body>'+
 '</soapenv:Envelope>';

 var request = {
 url : url,
 headers: headers,
 body: body
 };

 var response = NSOA.https.post(request);

 return response;
}

See also NSOA.https.post(request)

Outbound Calling — Post a Slack Message
In this code sample, the NSOA.https.post function is used to post a message on Slack using a webhook
URL. An object is created with url, headers and body properties. The body is defined, including any
attachments, and the headers property is used to specify the content type. The object is then passed to
the NSOA.https.post function and the response returned.

/**
 * Post a message to slack using a webhook URL.

User Scripting

Code Samples 134

 * @param {Str} text Text to display on message (required).
 * @param {Array} attachments Array of attachment objects (optional).
 * @return {Obj} An https.post response object.
 */
function postSlackMessage(url, text, attachments) {

 // Check that url parameter has a value, otherwise return
 url = url || '';
 if (!url || url.length === 0) { return null; }

 // Check that text parameter has a value, otherwise return
 text = text || '';
 if (!text || text.length === 0) { return null; }

 var body = {
 text: text
 };

 // If attachments param is provided, and it is of type Array (isArray method isn't supported...)
 if (attachments && Object.prototype.toString.call(attachments) === '[object Array]') { body.attachments = attachments; }

 NSOA.meta.log('debug', 'post.body -> ' + JSON.stringify(body));

 var headers = {
 'Content-type': 'application/json'
 };

 var response = NSOA.https.post({
 url: url,
 body: body,
 headers: headers
 });

 return response;
}

See also:

■ NSOA.https.post(request)

■ NSOA.meta.log(severity, message)

Outbound Calling — HTTPS GET with Authorization
In this code sample, the NSOA.https.get function is used to get a protected resource. A Password script
parameter is used to store the API token securely. The headers are created with the API token and then
passed with the URL to the NSOA.https.get function.

/**
 * Get a protected resource from a URL.
 * @param {Str} url API URL (required)
 * @return {Obj} An https.get response object.
 */
function getProtectedResource(url) {
 // Check that url parameter has a value, otherwise return
 url = url || '';
 if (!url || url.length === 0) { return null; }

 // Retrieve API auth token from script parameter
 api_token = NSOA.context.getParameter('api_token');

 var headers = {
 'Authorization': 'Bearer ' + api_token
 };

 var response = NSOA.https.get({
 url: url,
 headers: headers

User Scripting

Code Samples 135

 });

 return response;
}

See also:

■ NSOA.context.getParameter(name)

■ NSOA.https.get(request)

User Scripting

JavaScript 136

JavaScript

JavaScript Overview
OpenAir user scripts are external JavaScript files. OpenAir is compliant with ECMAScript 5.

JavaScript is a cross-platform, object-oriented scripting language.

Important: For OpenAir to use an external JavaScript file, it must be stored in a Workspace as
an ASCII text file with the file extension .js.

JavaScript is easy to learn.

Key Points

■ Semicolons to end statements are optional in JavaScript, but for clarity you are advised to always use
them.

■ JavaScript ignores extra white space. Use white space to make your scripts more readable.

Note: The following statements are the same.

var receiptDate=NSOA.form.getValue('date');
var receiptDate = NSOA.form.getValue('date');

■ JavaScript is case sensitive.

Important: The following variables are NOT the same!

var receiptDate;
var ReceiptDate;

■ JavaScript supports single and multliline comments. Use comments to make your scripts maintainable!

// This is a single line comment

/*
 This is a multiline comment
*/

Tip: You can comment out lines of script to prevent them from being executed. This is a
useful debugging technique.

Variables
Variables are usually declared in JavaScript with the var keyword.

var price;

User Scripting

Variables 137

Note: JavaScript is an untyped language, you cannot declare a variable to be a string or number.
Variables can hold any type and data types are converted automatically behind the scenes. See
Dynamic Data Types

Tip: If you don’t use var the variable will be declared as global. You should avoid using global
variables as they can result in unwanted side effects and are a frequent source of bugs! See
Variable Scope.

After a variable is declared its value is undefined.

A value is assigned to a variable with the equals sign.

price = 500;

A variable can be assigned a value when it is declared.

var price = 500;

A variable can be emptied by setting its value to null.

price = null;

If you re-declare a variable, the variable will not lose its value.

var travelType = "Car";
var travelType; // travelType is still "Car"

Important: If you assign a value to variable that has not been declared with var, the variable
will automatically be declared as a global variable. See Variable Scope.

Variables names must start with a letter or underscore and cannot use any Reserved Words.

Tip: Use short names for variables which you use only in nearest code.

Multi-word names add precision from right to left, adjectives are always at the left side.

Use camel-case.

Variable Scope
Variables in JavaScript can have local or global scope. The scope of a variable refers to the variable's
visibility within a script. Variables accessible to a restricted part of a script are said be local. Variables that
are accessible from anywhere, are said to be global.

Global variables can be created anywhere in JavaScript code, simply by assigning initial values to them.
Once created, global variables can be accessed from any part of the script and retain their values until the
script ends.

In JavaScript, newly created variables are assumed to be global, regardless of where they are created,
unless explicitly defined with the var keyword.

User Scripting

Variables 138

Important: Ambiguity can arise when a global variable and local variable have the same names.
JavaScript resolves this ambiguity by giving priority to local variables.

Dynamic Data Types
JavaScript has dynamic data types. The same JavaScript variable can be treated as having different data
types depending on the context it is used in.

var travelType; // travelType is undefined
var travelType = 5; // travelType is a Number
var travelType = "Car"; // travelType is a String

Internal JavaScript data types:

■ String

■ Number

■ Boolean

■ null

■ undefined

Note: See also Objects.

String
A string in JavaScript is series of characters enclosed in quotation marks. A string must be delimited by
quotation marks of the same type, either single quotation marks ' or double quotation marks ".

var name = "John Smith";
var type = 'customer';

You can use quotes inside a string, as long as they don't match the quotes surrounding the string.

var responseText = "It was paid to 'John Smith'";
var responseText = 'It was paid to "John Smith"';

You can put a quote inside a string using the \ character.

var responseText = 'It\'s okay.';

You can access a character in a string by its zero-based position index.

var name = "John Smith";
var character = name[3]; // character == 'n'

In JavaScript a string is an object. See String for properties and methods.

Number
JavaScript has only one type of number. Large numbers can be written in scientific (exponential) notation.

User Scripting

Variables 139

var pi = 3.14;
var amount = 314e5; // 31400000
var factor = 314e-5; // 0.00314

JavaScript interprets numeric constants as octal if they are preceded by a zero, and as hexadecimal if they
are preceded by a zero and x.

var x=0377; // This is 255 in decimal
var y=0xFF; // This is 255 in decimal

Important: When you assign a number to a variable, do not put quotes around the value. If
you put quotes around a numeric value, the variable content will be treated as a string.

Never write a number with a leading zero, unless you want an octal conversion.

In JavaScript a number is an object. See Number for properties and methods.

Boolean
Booleans can only have two values: true or false.

var sent = true;
var paid = false;

In JavaScript a Boolean is an object. See Boolean for properties and methods.

null
null is a special keyword denoting an empty value.

A variable can be emptied by setting it to null.

travelType = null;

undefined
This is a special keyword denoting an undefined value.

Before a variable is assigned a value it is undefined.

var travelType; // variable is undefined

Arrays
In JavaScript an array is created as follows:

// Creating an array
var priority = new Array();
priority[0] = "Low";
priority[1] = "Normal";
priority[2] = "High";

// Literal array

User Scripting

Arrays 140

var priority = ["Low","Normal","High"];

Note: JavaScript Arrays are zero base.

An element is accessed in the array by index number:

// To access the first element
var level = priority[0];

// To modify the first element
priority[0] = "Not required";

You can have different types in an array:

var entry = new Array();
entry[0] = Date.now;
entry[1] = "Book";
entry[2] = 5.99;

In JavaScript an array is an object, so an array can be an element in an array.

See Array for properties and methods.

See also Associative Array.

Associative Array
An associative array is a set of key value pairs. The value is stored in association with its key and if you
provide the key the array will return the value.

// To create an associative array
contacts = {
 firstname : 'John',
 lastname :'Smith'
};

Note: Notice the similarity to Objects.

An associative array is accessed by a key name.

// Use the key to access an entry
var value = contacts['firstname']; // value is 'John'

// You can also use dot notation
var value = contacts.lastname; // value is 'Smith'

Note: The key is always a string, but the value can be any type. See Dynamic Data Types and
Objects.

You can loop through the keys of an associative array with the for in loop.

// Get all the values on the fields on the form
var allValues = NSOA.form.getAllValues();

//Loop through all the values
for(var key in allValues) {
 NSOA.meta.alert(key + ' has value ' + allValues[key]);

User Scripting

Arrays 141

}

See also:

■ NSOA.form.getAllValues()
■ NSOA.meta.alert(message)

You can change the value using assignment to a property.

// Using the array notation
contacts['firstname'] = 'Joe';

// Using dot notation
contacts.firstname = 'Joe';

You can add a new key/value pair by assigning to a property that doesn't exist.

// Using the array notation
contacts['company'] = 'NetSuite';

// Using dot notation
contacts.company ='NetSuite';

Important: Some fields return an object. See Object Fields.

Objects
An object is just a special kind of data, with Properties and Methods.

JavaScript allows you to define your own objects.

// To declare an object
var person={ firstname : "John", lastname : "Smith", age: 25};

// Use spaces and line breaks to make your definition clearer
var person={
 firstname : "John",
 lastname : "Smith",
 age : 25
};

// You can access object properties in two way
var age = person.age;
var age = person["age"];

The object (person) in the example above has 3 properties: firstname, lastname, and age.

See also for in and forEach.

Properties
Properties are the values associated with an object.

The syntax for accessing the property of an object is:

objectName.propertyName

This example uses the length property of the String object to find the length of a string:

User Scripting

Objects 142

var message = "Hello World!";
var x = message.length;

The value of x, after execution of the code above will be 12.

Methods
Methods are the actions that can be performed on objects.

You can call a method with the following syntax:

objectName.methodName()

This example uses the toUpperCase() method of the String object, to convert a text to uppercase:

var message="Hello world!";
var x = message.toUpperCase();

The value of x, after execution of the code above will be “HELLO WORLD!”.

Functions
Functions are declared with the function keyword, they can be passed Arguments and can Return Values.

Function names must start with a letter or underscore and cannot use any Reserved Words.

// Declaring a function
function calcSum (x,y) {
 return x + y;
}

// Calling a function
var result = calcSum(15,25);

Note: Variables declared inside a function as var are local to the function. Variables defined
inside a function without the var are global variables.

Arguments
Functions do not need arguments.

function validateTravelDates() {
 var receiptDate = NSOA.form.getValue('date');
 var travelDate = NSOA.form.getValue('TravelDate__c');

 if (receiptDate < travelDate) {
 NSOA.form.error('TravelDate__c', 'The travel date cannot be after the receipt date!');
 }
}

You can pass as many arguments as you like separated by commas.

function calcSum (x,y,z) {
 var result = x + y + z;
 return result;

User Scripting

Functions 143

}

See also:

■ NSOA.form.getValue(field)

■ NSOA.form.error(field, message)

Important: If you declare a function with arguments then the function must be called with all
the arguments in the expected order.

Return Values
Functions do not need to return a value.

function logFormError(message) {
 NSOA.meta.log('error', 'Form error - ' + message);
}

See also:

■ NSOA.meta.log(severity, message)

Use the return statement to return a variable from a function.

function calcProduct (x,y) {
 var result = x * y;
 return result;
}

You can use the return statement to immediately exit a function. The return value is optional.

function reduceValue (x,y) {
 if (x < y) {
 return; // exit function
 }

 var result = x - y;
 return result;
}

Loops
JavaScript supports the following types of loop:

■ for

■ for in

■ forEach

■ do while

■ while

Key Points

■ Use the break statement to terminate the current while or for loop and continue executing the
statements after the loop..

User Scripting

Loops 144

■ Use the continue statement to stop executing the current iteration and continue with the next
iteration.

Important: Be careful not to create endless loops. Make sure your loops always have an exit
condition!

for
The for loop executes a block of code a specified number of times.

Syntax

for (initialization; condition; increment) {
 // statements
}

Example

for (var i = 0; i < 5; i++) {
 x = x + "The number is " + i;
}

for in
The for in loop is for iterating through the enumerable properties of an object. See Objects and
Associative Array.

Syntax

for (variable in object) {
 // code to be executed
}

Example

var person={firstName:"John",lastName:"Smith",age:21};

for (i in person) {
 s = s + person[i];
}

forEach
The forEach loop has the benefit that you don't have to declare indexing and entry variables in the
containing scope, as they're supplied as arguments to the iteration function, and so nicely scoped to just
that iteration.

var a = ["a", "b", "c"];
a.forEach(function(o) {
 NSOA.meta.alert(o);
});

See also:

User Scripting

Loops 145

■ NSOA.meta.alert(message)

do while
The do while loop is a variant of the while loop. This block is first executed and then repeated as long as
the condition is true.

Syntax

do {
 // statements
}
while (condition)

Example

var i=0;
do {
 x = x + "The number is " + i;
 i++;
}
while (i < 5)

while
The while loop iterates through a block of code as long as a specified condition is true.

Syntax

while (condition) {
 // statements
}

Example

var i = 0;
while (i < 5) {
 x = x + "The number is " + i;
 i++;
}

Conditional Statements
JavaScript supports if ... else and switch conditional statements.

if ... else syntax

if (condition) {
 statements_1
} else {
 statements_2
}

switch syntax

User Scripting

Conditional Statements 146

switch (expression) {
 case label_1:
 statements_1
 [break;]
 case label_2:
 statements_2
 [break;]
 default:
 statements_n
 [break;]
}

if ... else
if is the fundamental control statement that allows JavaScript to make decisions and execute statements
conditionally.

If the expression is true (i.e. today < endDate) then the block following if is executed.

var endDate = NSOA.form.getValue('end_date');
var today = new Date();
if (today < endDate) {
 // statements to execute if we haven't started this yet
}

If the expression is false (i.e. today < endDate in not true) the optional block following else is executed.

var endDate = NSOA.form.getValue('end_date');
var today = new Date();
if (today < endDate) {
 // statements to execute if we haven't started this yet
} else {
 // statements to execute if we have started
}

Note: ‘else’ is optional, but ‘if’ must be present

You can chain together as many if ... else statements as required.

var type = NSOA.form.getValue('type');
if (type == 0) {
 // statements to handle type 0
} else if (type == 1) {
 // statements to handle type 1
} else if (;type == 2) {
 // statements to handle type 2
} else{
 // statements to handle all other types
}

Tip: Rather than creating a long if .. else chain, use the switch statement.

Note: This is just a series of if statements, where each if is part of the else clause of the previous
statement. Each condition is evaluated in sequence. The first block with its condition to evaluate
true is executed and then the whole chain is exited. If no condition is true then the final else block
is executed.

See also:

User Scripting

Conditional Statements 147

■ NSOA.form.getValue(field)

switch
The switch statements compares an expression against a list of case values. Execution jumps to the first
case that matches. If nothing matches, execution jumps to the default condition.

var type = NSOA.form.getValue('type');
switch (type) {
 case 0:
 // statements to handle type 0
 break;
 case 1:
 // statements to handle type 1
 break;
 case 2:
 // statements to handle type 2
 break;
 default:
 // statements to handle all other types
}

Note: The break statements ends the case and execution jumps to the next statement after the
switch block. If the break is omitted execution continues with the next case.

Error Handling
JavaScript supports try and catch blocks to handle errors. When something goes wrong, JavaScript will
throw an error.

Syntax

try {
 // The code to run
}
catch(err) {
 // Code to handle any errors
}

Example

try {
 var receiptDate = NSOA.form.getValue('date');
 var travelDate = NSOA.form.getValue('TravelDate__c');

 if (receiptDate < travelDate) {
 NSOA.form.error('TravelDate__c', 'The travel date cannot be after the receipt date!');
 }
}
catch(err) {
 NSOA.meta.log('error', err.message);
}

See also:

■ NSOA.form.getValue(field)
■ NSOA.form.error(field, message)
■ NSOA.meta.log(severity, message)

User Scripting

Error Handling 148

Key points:

■ Use a try block to surround code that could throw an error.

■ Use a catch block to contain code that handles any errors.

■ You can use the throw statement to create custom errors.

throw
When an exception occurs JavaScript will throw an error that you can catch.

You can use the throw statement to raise your own custom exceptions. These exceptions can be captured
and appropriate action taken.

// Function that throws a custom "Divide by zero" error
function divide(x,y) {
 if(y == 0) {
 throw("Divide by zero");
 } else {
 return x / y;
 }
}

//Function that catches the custom error as a string
function test() {
 try {
 return divide(10,0);
 }
 catch(err) {
 // err == "Divide by zero"
 }
}

Note: You can throw different types, e.g. String, Number, and Object.

References

JavaScript Objects

Array
An Array object is used to store multiple values in a single variable.

// Creating an array
var priority = new Array();
priority[0] = "Low";
priority[1] = "Normal";
priority[2] = "High";

// To access the first element
var level = priority[0];

// To modify the first element
priority[0] = "Not required";

// To find the length of an array

User Scripting

References 149

var x = priority.length

// To find the index position of an element in the array
var i = priority.indexOf("Normal")

See also Associative Array.

Array Properties

Property Description

constructor Returns the function that created the Array object's prototype.

length Sets or returns the number of elements in an array.

prototype Allows you to add properties and methods to an Array object.

Array Methods

Method Description

concat() Joins two or more arrays, and returns a copy of the joined arrays.

indexOf() Search the array for an element and returns its position.

join() Joins all elements of an array into a string.

lastIndexOf() Search the array for an element, starting at the end, and returns its position.

pop() Removes the last element of an array, and returns that element.

push() Adds new elements to the end of an array, and returns the new length.

reverse() Reverses the order of the elements in an array

shift() Removes the first element of an array, and returns that element

slice() Selects a part of an array, and returns the new array.

sort() Sorts the elements of an array.

splice() Adds/Removes elements from an array.

toString() Converts an array to a string, and returns the result.

unshift() Adds new elements to the beginning of an array, and returns the new length.

valueOf() Returns the primitive value of an array

Boolean
A Boolean object is used to convert a non-Boolean value to a Boolean value (true or false).

var bool = new Boolean();

Boolean Properties

Property Description

constructor Returns the function that created the Boolean object's prototype.

User Scripting

References 150

Property Description

prototype Allows you to add properties and methods to an Boolean object.

Boolean Methods

Method Description

toString() Converts a Boolean value to a string, and returns the result (either “true” or ”false”).

bool.toString()

valueOf() Returns the primitive value of a Boolean object (either true or false).

bool.valueOf()

Date
A Date object is used to work with dates and times.

Date objects are created with new Date().

There are four ways of creating a Date object:

var dt = new Date();
var dt = new Date(milliseconds);
var dt = new Date(dateString);
var dt = new Date(year, month, day, hours, minutes, seconds, milliseconds);

Example of setting a date

var startDate = new Date();
startDate.setFullYear(2013,0,14); // startDate == "Jan 14, 2013"

Note: month is zero-based i.e. 0 == ‘January’

Example of comparing two dates

var startDate = new Date();
startDate.setFullYear(2013,0,14);
var today = new Date();
if (startDate > today) {
 // startDate later than today's date
} else {
 // startDate is on or before today's date
}

Date Properties

Property Description

constructor Returns the function that created the Date object's prototype.

prototype Allows you to add properties and methods to a Date object.

User Scripting

References 151

Date Methods

Method Description

getDate() Returns the day of the month (from 1-31).

getDay() Returns the day of the week (from 0-6).

getFullYear() Returns the year (four digits)

getHours() Returns the hour (from 0-23).

getMilliseconds() Returns the milliseconds (from 0-999).

getMinutes() Returns the minutes (from 0-59).

getMonth() Returns the month (from 0-11).

getSeconds() Returns the seconds (from 0-59).

getTime() Returns the number of milliseconds since midnight Jan 1, 1970.

getTimezoneOffset() Returns the time difference between UTC time and local time, in minutes.

getUTCDate() Returns the day of the month, according to universal time (from 1-31).

getUTCDay() Returns the day of the week, according to universal time (from 0-6).

getUTCFullYear() Returns the year, according to universal time (four digits).

getUTCHours() Returns the hour, according to universal time (from 0-23).

getUTCMilliseconds() Returns the milliseconds, according to universal time (from 0-999).

getUTCMinutes() Returns the minutes, according to universal time (from 0-59).

getUTCMonth() Returns the month, according to universal time (from 0-11).

getUTCSeconds() Returns the seconds, according to universal time (from 0-59).

getYear() Deprecated. Use the getFullYear() method instead.

parse() Parses a date string and returns the number of milliseconds since midnight of January 1,
1970.

setDate() Sets the day of the month of a date object.

setFullYear() Sets the year (four digits) of a date object.

setHours() Sets the hour of a date object .

setMilliseconds() Sets the milliseconds of a date object.

setMinutes() Set the minutes of a date object.

setMonth() Sets the month of a date object.

setSeconds() Sets the seconds of a date object.

setTime() Sets a date and time by adding or subtracting a specified number of milliseconds to/from
midnight January 1, 1970.

setUTCDate() Sets the day of the month of a date object, according to universal time.

setUTCFullYear() Sets the year of a date object, according to universal time (four digits).

User Scripting

References 152

Method Description

setUTCHours() Sets the hour of a date object, according to universal time.

setUTCMilliseconds() Sets the milliseconds of a date object, according to universal time.

setUTCMinutes() Set the minutes of a date object, according to universal time.

setUTCMonth() Sets the month of a date object, according to universal time.

setUTCSeconds() Set the seconds of a date object, according to universal time.

setYear() Deprecated. Use the setFullYear() method instead

toDateString() Converts the date portion of a Date object into a readable string

toGMTString() Deprecated. Use the toUTCString() method instead.

toISOString() Returns the date as a string, using the ISO standard.

toJSON() Returns the date as a string, formated as a JSON date.

toLocaleDateString() Returns the date portion of a Date object as a string, using locale conventions.

toLocaleTimeString() Returns the time portion of a Date object as a string, using locale conventions.

toLocaleString() Converts a Date object to a string, using locale conventions

toString() Converts a Date object to a string.

toTimeString() Converts the time portion of a Date object to a string

toUTCString() Converts a Date object to a string, according to universal time

UTC() Returns the number of milliseconds in a date string since midnight of January 1, 1970,
according to universal time.

valueOf() Returns the primitive value of a Date object.

Math
The Math object allows you to perform mathematical tasks.

The Math object does not need to be created to use it.

var pi = Math.PI; // Returns PI value
var x = Math.sqrt(25); // Returns the square root of 25

Math Properties

Property Description

E Returns Euler's number (approx. 2.718).

LN2 Returns the natural logarithm of 2 (approx. 0.693).

LN10 Returns the natural logarithm of 10 (approx. 2.302).

LOG2E Returns the base-2 logarithm of E (approx. 1.442).

LOG10E Returns the base-10 logarithm of E (approx. 0.434).

User Scripting

References 153

Property Description

PI Returns the square root of 1/2 (approx. 0.707).

SQRT1_2 Allows you to add properties and methods to a Number object.

SQRT2 Returns the square root of 2 (approx. 1.414).

Math Methods

Method Description

abs(x) Returns the absolute value of x.

acos(x) Returns the arccosine of x, in radians.

asin(x) Returns the arcsine of x, in radians.

atan(x) Returns the arctangent of x as a numeric value between -PI/2 and PI/2 radians.

atan2(y,x) Returns the arctangent of the quotient of its arguments.

ceil(x) Returns x, rounded upwards to the nearest integer.

cos(x) Returns the cosine of x (x is in radians)

exp(x) Returns the value of Ex.

floor(x) Returns x, rounded downwards to the nearest integer.

log(x) Returns the natural logarithm (base E) of x.

max(x,y,z,...,n) Returns the number with the highest value.

min(x,y,z,...,n) Returns the number with the lowest value.

pow(x,y) Returns the value of x to the power of y.

random() Returns a random number between 0 and 1.

round(x) Rounds x to the nearest integer.

sin(x) Returns the sine of x (x is in radians).

sqrt(x) Returns the square root of x.

tan(x) Returns the tangent of an angle.

Number
A Number object is an object wrapper for primitive numeric values.

var x = new Number(value);

Note: If the value parameter cannot be converted into a number, it returns NaN (Not-a-Number).

Number Properties

Property Description

constructor Returns the function that created the Number object's prototype.

User Scripting

References 154

Property Description

MAX_VALUE Returns the largest number possible in JavaScript.

MIN_VALUE Returns the smallest number possible in JavaScript

NEGATIVE_INFINITY Represents negative infinity (returned on overflow).

NaN Represents a "Not-a-Number" value.

POSITIVE_INFINITY Represents positive infinity (returned on overflow).

prototype Allows you to add properties and methods to a Number object.

Number Methods

Method Description

toExponential(x) Converts a number into an exponential notation.

toFixed(x) Formats a number with x numbers of digits after the decimal point.

toPrecision(x) Formats a number to x length

toString() Converts a Number object to a string.

valueOf() Returns the primitive value of a Number object.

String
A String object is used to manipulate a series of characters.

A String object is created with new String() or by assigning a string to a variable.

var s = new String("Hello world!");
// or just:
var s = "Hello world!";

// Finding the length of a string
var message = "Hello World!";
var x = message.length; // x is 12

// Converting a string to uppercase
var message="Hello world!";
var x=message.toUpperCase(); // x is "HELLO WORLD!"

/* The indexOf()method returns the position (as a number) of the
first found occurrence of a specified text inside a string */
var str="Hello world, welcome to OpenAir.";
var n=str.indexOf("welcome");

String Properties

Property Description

constructor Returns the function that created the String object's prototype.

length Returns the length of a string.

prototype Allows you to add properties and methods to a String object.

String Methods

User Scripting

References 155

Method Description

charAt() Returns the character at the specified index.

charCodeAt() Returns the Unicode of the character at the specified index.

concat() Joins two or more strings, and returns a copy of the joined strings.

fromCharCode() Converts Unicode values to characters.

indexOf() Returns the position of the first found occurrence of a specified value in a string.

lastIndexOf() Returns the position of the last found occurrence of a specified value in a string.

match() Searches for a match between a regular expression and a string, and returns the matches.

replace() Searches for a match between a substring (or regular expression) and a string, and replaces the
matched substring with a new substring.

search() Searches for a match between a regular expression and a string, and returns the position of the
match.

slice() Extracts a part of a string and returns a new string.

split() Splits a string into an array of substrings.

substr() Extracts the characters from a string, beginning at a specified start position, and through the
specified number of character.

substring() Extracts the characters from a string, between two specified indices.

toLowerCase() Converts a string to lowercase letters.

toUpperCase() Converts a string to uppercase letters.

trim() Removes white space from both ends of a string.

valueOf() Returns the primitive value of a String object.

JavaScript Operators
= is used to assign values.

+ is used to add values together.

JavaScript Operators:

■ Arithmetic Operators

■ Assignment Operators

■ Comparison Operators

■ Logical Operators

Note: JavaScript also contains a conditional operator that assigns a value to a variable based on
a condition.

/* If the quantity ordered is more than 1000
 * then the packing cost is for a large packet,
 * otherwise the packing cost is for a small packet.
*/

User Scripting

References 156

packingCost=(quantity>1000)?largePacket:smallPacket;

Arithmetic Operators
Arithmetic operators are used to perform arithmetic between variables and/or values.

Operator Description Example

+ Addition x=y+2;

- Subtraction x=y-2;

* Multiplication x=y*2;

/ Division x=y/2;

% Modulus (division remainder) x=y%2;

++ Pre-Increment

Post-Increment

x=++y;

x=y++;

-- Pre-Decrement

Post-Decrement

x=--y;

x=y--;

Assignment Operators
Assignment operators are used to assign values to JavaScript variables.

Operator Example Equivalent to

= x=y;

+= x+=y; x=x+y;

-= x-=y; x=x-y;

= x=y; x=x*y;

/= x/=y; x=x/y;

%= x%=y; x=x%y;

Comparison Operators
Comparison operators are used in logical statements to determine equality or difference between
variables or values.

Operator Description

== equal to

=== exactly equal to (value and type)

!= not equal

!== not exactly equal (different value or type)

User Scripting

References 157

Operator Description

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Logical Operators
Logical operators are used to determine the logic between variables or values.

Operator Description Example

&& and (true && false) == false

|| or (true || false) == true

! not !(false) == true

Reserved Words
The following words cannot be used as JavaScript variables, functions, methods, or object names:

■ JavaScript Keywords

■ JavaScript Reserved Keywords

JavaScript Keywords

break for throw

case function try

catch if typeof

continue in var

default instanceof void

delete new while

do return with

else switch finally

this

JavaScript Reserved Keywords

abstract export long

synchronized Boolean extends

User Scripting

References 158

native throws byte

final package transient

char float private

volatile class goto

protected const implements

public debugger import

short double int

static enum interface

super

Escape Sequences
An escape sequence in created using a backslash to identify the special character.

JavaScript supports the following escape sequences:

Escape Sequence Description

\’ Single quote or apostrophe

\” Double quote

\\ Backslash

\0 Null character (that is backslash plus zero)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\xXX Latin-1 character specified by two hexadecimal digits.

For example, the copyright symbol its \xa9

\uXXXX Unicode character specified by four hexadecimal digits.

For example, the π symbol is \u03c0.

Note: If you include the backslash in front of any other character than those shown in the table,
JavaScript will ignore the backslash.

User Scripting

Scripting Best Practices 159

Scripting Best Practices
The following sections offer a series of best practices which you can apply to your scripting. These best
practices are meant to help you succeed with scripting, and create scripts which:

■ Can be verified and tracked as working correctly
■ Can recover from errors
■ Don’t need continuous maintenance

Following these practices can maximize your investment in scripting.

Development
■ Confirm that your development and production accounts have the necessary switches enabled.

You must have the “Enable user script support for Web Service API methods” feature to use the
NSOA.wsapi functions. See Scripting Switches.

Note: By default, scheduled triggers are disabled on sandboxes.

■ Test your scripts in a sandbox account before deploying them to a production account. See Testing
Form Scripts.

■ Use platform role permissions to control access to critical features of the Scripting Center and
Scripting Studio. See Platform Role Permissions.

■ Always check for errors and handle errors appropriately. See Error Handling.
■ Consider mobile users when designing scripted solutions. Scripts triggered by “On submit”, “Before

save”, or “After save” are not supported for mobile devices. See Scripting and OpenAir Mobile.
■ If you are using NetSuite Connector to import Project records from NetSuite, review NetSuite

Connector configuration options. Depending on the integration configuration, form scripts triggered
by the “Before save” or “After save” events may run for each imported project record. See Scripting and
NetSuite Integration.

■ Remember that some NSOA functions have no effect for certain script events. For example,
NSOA.form.error has no effect on the “After save” form event. See NSOA Functions.

■ Use NSOA.form.setValue instead of a wsapi call when possible. See NSOA.form.setValue(field, value).
■ Use NSOA.form.confirmation / warning / error messages to give user feedback. See

NSOA.form.confirmation(message), NSOA.form.warning(message), and NSOA.form.error(field,
message).

■ Write scripts which fail safely and are re-entrant to avoid data corruption.

Writing Scripts in JavaScript
■ Use comments to explain the script. See JavaScript Overview.
■ Use indentation and white space to make your code easy to read. See JavaScript Overview.
■ Use meaningful names for variables and functions. See Variables.
■ Be consistent in the way you name variables and functions. Use camel case. See Variables.
■ Be careful with quotation marks. Quotation marks are used in pairs around strings and that both

quotation marks must be of the same style (either single or double). See String.
■ Be careful with equal signs. You should not use a single equal sign for comparisons. See Comparison

Operators.

User Scripting

SOAP / WSAPI 160

■ Declare variables explicitly using the var keyword. See Variables.
■ Be careful not to create endless loops. Your loops should always have an exit condition. See Loops.
■ Rather than creating a long “if .. else” chain, use the “switch” statement. See Conditional Statements.
■ Use “try and catch” blocks to handle errors. See Error Handling.

SOAP / WSAPI
■ Always check that any SOAP API call was successful before using the results. See Handling SOAP

Errors.
■ Where possible, batch a series of objects together into a single SOAP API call rather than making a

separate call for each object. See Making SOAP Calls.
■ The updated and created fields are maintained automatically by OpenAir. You can read these values,

but they cannot be modified. See Making SOAP Calls.
■ You cannot delete an entity (database record) which has dependent records. You must first delete all

the dependent records. See Deleting data.
■ You must specify a limit attribute to read data. Make this limit as small as possible if you will only

access the first record (for example, set the limit attribute to 1). See Attribute and Reading data.
■ Don’t forget to specify the ‘update_custom’ attribute to update a custom field. See Updating Custom

Fields.

Logs
■ Use log messages to verify your script is executing as expected and to help you to troubleshoot scripts

which behave unexpectedly. Logs.
■ Set the log severity to “Warning” or “Error” to save space and improve system performance. See Log

Severity.
■ Set the log severity of a deployed script to "Debug" or "Trace" to track down errors which only occur

for a deployed script. See Log Severity.
■ Use the “delete log entries” maintenance task to delete log entries which are no longer needed. Use

this maintenance task when your system is not busy and be careful not to delete log entries which you
may need. See Delete Log Entries.

■ Always keep at least the last 30 days of logs. See Delete Log Entries.

Data Access
■ Make sure your script can run correctly for any user that may trigger the script. Form scripts are

executed within the context of the user who is signed in. See NSOA.wsapi.disableFilterSet([flag]).
■ When setting “Select user to execute a script deployment”, create a dedicated user with the minimum

necessary permissions dedicated to this purpose. See Platform Role Permissions.

Governance
■ Make sure that none of the execution paths through your script will exceed the allowed units limit. See

Scripting Governance.

User Scripting

Maintainable Scripts 161

■ Don’t try to do too much in a script (especially in a form script). Make sure your script can finish well
within the allowed time limits. Your script needs to be able to run successfully even when the server is
under load. See Scripting Governance.

■ Always try to reduce the number of units your scripts consume. Notice that NSOA.record functions
consume zero units, but NSOA.wsapi functions consume 10 units for each call. See NSOA Functions.

Maintainable Scripts
■ Access custom fields using the __c notation (note the two underscore characters). The old approach

to read custom fields using custom_ with the internally assigned custom field number appended is
still supported but NOT recommended. In addition, scripts using the custom_ notation may not be
portable between environments, for example, from sandbox to production. See Reading Custom
Fields.

■ Reference custom fields used by the script. This will prevent changes to custom fields from
unintentionally breaking a script. See Updating Custom Fields.

■ Reference parameters used by the script. Referencing a parameter prevents the parameter from
being deleted or changed in a way which will affect the script. See Creating Parameters.

■ Use library scripts to package the complexity of a scripted solution into calling scripts and supporting
functions. This will result in scripts which are easier to build and maintain. You can build libraries of
proven functions to reduce the cost of future development and maintenance. See Creating Library
Scripts.

■ Use script parameters to create scripts which can be configured without needing to change the script.
See Creating Parameters.

■ Use script terminology to allow scripts to immediately reflect any terminology changes made by the
administrator. See Accessing Terminology.

■ Use platform solutions to package all the elements of a script into a single file. See Creating Solutions.

User Scripting

Real World Use Cases 162

Real World Use Cases
The following examples are provided to assist you in developing your own scripts. Please be aware of the
disclaimer for these examples.

Important: Oracle may provide sample code in SuiteAnswers, OpenAir Help Center, User
Guides, or elsewhere through help links. All such sample code is provided "as is” and “as available”,
for use only with an authorized OpenAir Service account, and is made available as a SuiteCloud
Technology subject to the SuiteCloud Terms of Service at www.netsuite.com/tos where the term
“Service” shall mean the OpenAir Service.

Oracle may modify or remove sample code at any time without notice.

■ Validation

□ Ensure value of multiple commissions fields equals 100%

□ Require notes field to be populated on time entries when more than 8 hours in a day

□ When submitting an expense report, validate each ticket has an attachment (e.g. scanned receipt)

□ Ensure resource time entry matches booking planning and project worked hours

■ Automation

□ Optionally create a new Customer PO when editing a project

□ Create time entries from task assignments when the user creates a new timesheet

□ Control budgeted hours for a project using the project budget feature and a custom hours field

■ Workflow

□ Prevent a booking from being created if the selected resource has approved time off during the
booking period

□ Prevent closing a project that has open issues

□ Automatically create a new issue when project stage is "at risk" and prevent project stage from
changing until this issue is resolved

□ Send an alert email when a scheduled script completes

□ Send a Slack notification when issues are created or (re)assigned

Note: Find these examples on the Platform Solutions catalog page in OpenAir Help Center. See
Platform Solutions Catalog.

Using the Examples
Before you start, make sure you have the necessary switches enabled in your test account, see Getting
Started.

Note: You need to be signed in as an administrator to work with the development environment.

To try out the examples:

1. Sign in as an Administrator and navigate to the Administration > Scripting Center.

2. Follow the steps described in the Setup section for the example. See Quick Start for more details.

User Scripting

http://www.netsuite.com/tos

Platform Solutions Catalog 163

Tip: Save time by using the solution file link provided at the top of each setup section,
see Creating Solutions.

3. See Scripting Workflow and Testing Form Scripts.

Platform Solutions Catalog
Find the real world use case scripting examples on the Platform Solutions catalog page in OpenAir Help
Center.

To view the platform solutions catalog, go to User Menu > Help Center > Platform Solutions. The page
lists all the real world user scripting examples described in this guide. Solutions are color coded by
category — Validation, Automation, Workflow — with a visual representation and a short summary to
indicate the purpose of each solution.

■ To save the solution XML file, click the DOWNLOAD link. You can then import the solution file from the
Scripting Center in OpenAir.

■ To read the help topic describing the solution, click the LEARN MORE link.

User Scripting

Validation 164

Validation

Ensure value of multiple commissions fields equals 100%
This script checks to ensure that sales commission amounts equal 100% (1.00) before allowing the project
to be saved. It can be modified to support any number of sales rep commissions fields.

■ Enrich records with additional sales management information.

■ Easily reusable/extendible with minimal effort.

■ Might solve this case using allocation grid custom field, but this solution allows user pick lists and
retains a more detailed audit trail.

A new custom Commission section has been added to the project form. A user script is triggered as the
project saves to validate the commission values entered.

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Project form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the Before save event, and set
checkCommish as the Entrance Function.

User Scripting

https://app.openair.com/download/solutions/validate_project_commission.xml

Validation 165

5. Set up the required number of custom field pairs for Project. The first in each pair is a Pick List
with a List source of User. The second in each pair is a Ratio. You can set the Divider text for the
first custom field to Commission to place the custom fields in their own section.

6. Use the Form schema to identify the correct param names for the custom fields and change the
array at the top of the script accordingly.

User Scripting

Validation 166

Tip: If the new custom fields are not listed in the Form schema, navigate to Projects,
open a project form (this with will refresh the custom field list), and then open the Scripting
Studio again.

Program Listing

// ADD YOUR REP AND RATIO CUSTOM FORM FIELD NAMES TO THE ARRAY BELOW
var repCompFlds = [
 'prj_sales_rep_1__c', 'prj_sales_rep_ratio_1__c', // Use Form schema to find param names
 'prj_sales_rep_2__c', 'prj_sales_rep_ratio_2__c'
];

function checkCommish(type) {

 try {
 var _len = repCompFlds.length,
 _i = 1, // Skip over sales rep name
 _j = 0,
 totalComp = 0;

 while (_i < _len) {
 totalComp += parseFloat(NSOA.form.getValue(repCompFlds[_i]));
 _i += 2; // Skip over sales rep name
 }

 var totalCompRound = round(totalComp, 2),
 totalCompPercent = totalCompRound * 100;
 if (totalCompRound !== 0 && totalCompRound != 1) {

 NSOA.form.error(
 '',
 'The total sales commission ' + totalCompRound +
 ' (' + round(totalCompPercent, 2) + '%) must equal 100%!'
);

 for (_j; _j < _len; _j++) {
 NSOA.form.error(repCompFlds[_j], 'Please check and re-save.');
 }
 }

 } catch (e) {
 NSOA.meta.log('fatal', "Error running the script: " + e);
 }

}

function round(number, decimals) {
 return (Math.round(number * Math.pow(10, 2)) / Math.pow(10, 2)).toFixed(decimals);
}

Require notes field to be populated on time entries when
more than 8 hours in a day
This script validates that the notes field has been populated on time entries when more than 8 hours in a
day.

■ Validation occurs before a timesheet may be submitted for approval

■ Ensures daily overtime hours are annotated

■ Easily customizable to support policy on different time periods, or groupings (e.g. by project)

User Scripting

Validation 167

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Timesheet [Edit] form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the Before approval event, and set
require_timeentry_notes_daily_overtime as the Entrance Function.

Program Listing

function require_timeentry_notes_daily_overtime() {

 // Load task data
 var task = new NSOA.record.oaTask();
 task.timesheetid = NSOA.form.getOldRecord().id;
 NSOA.meta.log('debug', "got ts ID " + task.timesheetid);

 var readRequest = {
 type: "Task",
 fields: "id, date, decimal_hours, notes",
 method: "equal to",
 objects: [task],
 attributes: [{
 name: "limit",
 value: "1000"
 }]
 };

 var arrayOfreadResult = NSOA.wsapi.read(readRequest);

 // Analyze the timesheet

User Scripting

https://app.openair.com/download/solutions/validate_timeentry_notes.xml

Validation 168

 var ts_total_by_day = {};
 var task_no_notes_by_day = {};
 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error loading timesheet details.");

 else if (arrayOfreadResult[0].errors === null && arrayOfreadResult[0].objects)
 arrayOfreadResult[0].objects.forEach(
 function(o) {
 // Get yyyy-mm-dd part
 var date = o.date.substr(0, 10);

 // Track total hours for this day
 if (ts_total_by_day[date] === undefined)
 ts_total_by_day[date] = Number(o.decimal_hours);
 else if (ts_total_by_day[date] <= 8)
 ts_total_by_day[date] += Number(o.decimal_hours);
 else
 return; // Already reported form error if we got here
 NSOA.meta.log('debug', date + " -> " + ts_total_by_day[date]);

 // Track time entries with no notes
 if (task_no_notes_by_day[date] === undefined)
 task_no_notes_by_day[date] = [];
 if (o.notes === undefined || o.notes.length === 0)
 task_no_notes_by_day[date].push(o.id);

 // Check the policy
 if (ts_total_by_day[date] > 8 && task_no_notes_by_day[date] !== undefined &&
 task_no_notes_by_day[date].length > 0) {
 NSOA.meta.log('trace', ts_total_by_day[date] + " -> " + task_no_notes_by_day[date].length);
 NSOA.form.error('', "Notes are required on all " + date +
 " time entries: total reported time that day is more than 8 hours.");
 }
 }
);
}

When submitting an expense report, validate each ticket
has an attachment (e.g. scanned receipt)
This script validates each receipt has an attachment when submitting an expense report.

■ Verifies whether document attachments exist on a ticket record

■ Does not require an attachment if "Missing receipt" is checked

Note: The Enable the missing paper receipt feature switch needs to be enabled for this
option.

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Envelope form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the Before approval event, and set
check_receipt_has_attachments as the Entrance Function.

User Scripting

https://app.openair.com/download/solutions/validate_ticket_attachment.xml

Validation 169

Program Listing

function check_receipt_has_attachments(type) {

 // return if not an approve_request
 if (type != 'approve_request')
 return;

 // Load receipt data
 var envelope = NSOA.form.getOldRecord();
 var ticket = new NSOA.record.oaTicket();
 ticket.envelopeid = envelope.id;

 var readRequest = {
 type: "Ticket",
 fields: "id, attachmentid, reference_number, missing_receipt",
 method: "equal to",
 objects: [ticket],
 attributes: [{
 name: "limit",
 value: "250"
 }]
 };

 var arrayOfreadResult = NSOA.wsapi.read(readRequest);
 var missingAttachment = [];
 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error reading envelope receipts.");

 else if (arrayOfreadResult[0].errors === null && arrayOfreadResult[0].objects)
 arrayOfreadResult[0].objects.forEach(
 function(o) {
 if (o.attachmentid === '0' && o.missing_receipt != '1')
 missingAttachment.push(o.reference_number);
 }
);

 if (missingAttachment.length > 0) {
 NSOA.form.error('',

User Scripting

Validation 170

 "The following receipts (by reference number) are missing an attachment: " +
 missingAttachment.join(", "));
 }
}

Ensure resource time entry matches booking planning and
project worked hours
This script ensures that resources are not logging time after the task assignment related booking end
date, or exceeding assigned planned hours.

■ Keep worked time in-sync with planned allocation
■ Stay within planned budget
■ Works on mobile devices (iPhone/Android)

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Timesheet [Edit] form script deployment.
2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.
3. Click on the script link to launch the Scripting Studio.
4. (1) Copy the Program Listing below into the editor, (2) set the Before approval event, and set

verify_timeentry_policy as the Entrance Function.

Program Listing
function verify_timeentry_policy(type) {
 var timesheet = NSOA.form.getOldRecord();

 // Only check on approval request and if current user is the timesheet owner
 if (type != 'approve_request' || timesheet.userid != NSOA.wsapi.whoami().id)
 return;

 // Load task data

User Scripting

https://app.openair.com/download/solutions/validate_timeentry_policy.xml

Validation 171

 var taskFilter = new NSOA.record.oaTask();
 taskFilter.timesheetid = timesheet.id;

 // disable current user's filter for this script
 NSOA.wsapi.disableFilterSet(true);

 // Analyze tasks to load related records
 var task_readRequest = {
 type: "Task",
 fields: "id, date, projecttaskid, decimal_hours",
 method: "equal to",
 objects: [taskFilter],
 attributes: [{
 name: "limit",
 value: "1000"
 }, {
 name: "filter",
 value: "current-user"
 }]
 };
 var task_arrayOfreadResult = NSOA.wsapi.read(task_readRequest);

 var tasks_by_uniqueKey = {};
 var ts_pta_worked_hours = {};
 var ptaFilters = {};
 var bookingFilters = {};
 if (!task_arrayOfreadResult || !task_arrayOfreadResult[0])
 NSOA.form.error('', "Internal error loading %task% details.");
 else if (task_arrayOfreadResult[0].errors === null && task_arrayOfreadResult[0].objects)
 task_arrayOfreadResult[0].objects.forEach(function(task) {
 NSOA.meta.log('debug', "Got task: " + JSON.stringify(task));

 // Only consider project task assignments
 if (!task.projecttaskid)
 return;

 // Correlate booking <=> project_task_assignment via task tuple(project_task_id,user_id)
 var uniqueKey = task.projecttaskid;

 // Store information about this time entry
 if (tasks_by_uniqueKey[uniqueKey])
 tasks_by_uniqueKey[uniqueKey].push(task);
 else
 tasks_by_uniqueKey[uniqueKey] = [task];
 ts_pta_worked_hours[uniqueKey] += parseFloat(task.decimal_hours);

 // Prepare related booking filters
 var bookingFilter = new NSOA.record.oaBooking();
 bookingFilter.project_taskid = task.projecttaskid;
 bookingFilters[uniqueKey] = bookingFilter; // elimiate duplicates

 // Prepare related project_task_assign filters
 var ptaFilter = new NSOA.record.oaProjecttaskassign();
 ptaFilter.projecttaskid = task.projecttaskid;
 ptaFilters[uniqueKey] = ptaFilter; // elimiate duplicates

 });
 else
 return; // assume no data found

 // Now load and analyze project task assignments (one read request)
 if (Object.keys(ptaFilters).length > 0) {
 var equalTo = [];
 for (var i = 0; i < Object.keys(ptaFilters).length; i++)
 equalTo.push("equal to");
 var ptaFilter = [];
 Object.keys(ptaFilters).forEach(function(k) {
 ptaFilter.push(ptaFilters[k]);
 });
 var pta_readRequest = {
 type: "Projecttaskassign",
 fields: "id, planned_hours, userid, projecttaskid",
 method: equalTo.join(', or '),

User Scripting

Validation 172

 objects: ptaFilter,
 attributes: [{
 name: "limit",
 value: "1000"
 }, {
 name: "filter",
 value: "current-user"
 }]
 };
 NSOA.meta.log('debug', "pta_readRequest=" + JSON.stringify(pta_readRequest));
 var pta_arrayOfreadResult = NSOA.wsapi.read(pta_readRequest);
 NSOA.meta.log('debug', "pta_arrayOfreadResult=" + JSON.stringify(pta_arrayOfreadResult));

 var pta_planned_hours = {};
 var pta_worked_hours = {};
 if (!pta_arrayOfreadResult || !pta_arrayOfreadResult[0])
 NSOA.form.error('', "Internal error loading %project_task% assignment details.");
 else if (pta_arrayOfreadResult[0].errors === null && pta_arrayOfreadResult[0].objects)
 pta_arrayOfreadResult[0].objects.forEach(function(pta) {
 var uniqueKey = pta.projecttaskid;
 var planned_hours = parseFloat(pta.planned_hours);

 // Skip assignment if no planned hours
 if (!planned_hours)
 return;

 // Compute worked hours for current user's assignment
 var taskFilter = new NSOA.record.oaTask();
 taskFilter.projecttaskid = pta.projecttaskid;
 taskFilter.userid = pta.userid;
 var task_readRequest = {
 type: "Task",
 fields: "id, decimal_hours",
 method: "equal to",
 objects: [taskFilter],
 attributes: [{
 name: "limit",
 value: "1000"
 }, {
 name: "filter",
 value: "current-user"
 }]
 };
 var task_arrayOfreadResult = NSOA.wsapi.read(task_readRequest);

 var worked_hours = 0;
 if (!task_arrayOfreadResult || !task_arrayOfreadResult[0])
 NSOA.form.error('', "Internal error loading %timeentry% assignment details.");
 else if (task_arrayOfreadResult[0].errors === null && task_arrayOfreadResult[0].objects)
 task_arrayOfreadResult[0].objects.forEach(function(task) {
 worked_hours += parseFloat(task.decimal_hours);
 });

 // Verify user's worked hours haven't exceeded as a result of this timesheet
 NSOA.meta.log('debug', "worked=" + worked_hours + ",planned=" + planned_hours);
 if (worked_hours && worked_hours > planned_hours) {
 var pt = NSOA.record.oaProjecttask(pta.projecttaskid);
 var error = "Worked %hours% (" + worked_hours + ") including %timeentrys% on this %timesheet% exceeds your
 planned %hours% (" + planned_hours + ") for %project% '" + NSOA.record.oaProject(pt.projectid).name + "' %project_task% '" +
 pt.name + "'.";
 if (ts_pta_worked_hours[uniqueKey]) {
 error += "This %timesheet% adds " + ts_pta_worked_hours[uniqueKey] + " %hours%.";
 var worked_excluding_ts = worked_hours - ts_pta_worked_hours[uniqueKey];
 if (worked_excluding_ts <= planned_hours)
 error += "Please reduce your worked %hours% by " + (worked_hours - planned_hours) + ".";
 }
 NSOA.form.error('', error);
 }
 });
 }

 // Now load and analyze bookings
 var df = require('lib_date_format');

User Scripting

Validation 173

 if (Object.keys(bookingFilters).length > 0) {
 var equalTo = [];
 for (var i = 0; i < Object.keys(bookingFilters).length; i++)
 equalTo.push("equal to");
 var bookingFilter = [];
 Object.keys(bookingFilters).forEach(function(k) {
 bookingFilter.push(bookingFilters[k]);
 });
 var booking_readRequest = {
 type: "Booking",
 fields: "id, enddate, userid, project_taskid, projectid",
 method: equalTo.join(', or '),
 objects: bookingFilter,
 attributes: [{
 name: "limit",
 value: "1000"
 }, {
 name: "filter",
 value: "current-user"
 }]
 };
 NSOA.meta.log('debug', "booking_readRequest=" + JSON.stringify(booking_readRequest));
 var booking_arrayOfreadResult = NSOA.wsapi.read(booking_readRequest);
 NSOA.meta.log('debug', "booking_arrayOfreadResult=" + JSON.stringify(booking_arrayOfreadResult));

 if (!booking_arrayOfreadResult || !booking_arrayOfreadResult[0])
 NSOA.form.error('', "Internal error loading %project_task% assignment details.");
 else if (booking_arrayOfreadResult[0].errors === null && booking_arrayOfreadResult[0].objects)
 booking_arrayOfreadResult[0].objects.forEach(function(booking) {
 var uniqueKey = booking.project_taskid;
 NSOA.meta.log('debug', uniqueKey + "," + JSON.stringify(tasks_by_uniqueKey));
 var tasks = tasks_by_uniqueKey[uniqueKey];
 if (!tasks)
 return;
 tasks.forEach(function(task) {
 var taskDate = new Date(task.date.substr(0, 10));
 taskDate.setDate(taskDate.getDate() + 1);
 NSOA.meta.log('debug', JSON.stringify(task));
 var bookingDate = new Date(booking.enddate.substr(0, 10));
 NSOA.meta.log('debug', "Check: " + taskDate + '>' + bookingDate);
 if (taskDate && bookingDate) {
 if (taskDate > bookingDate) {
 var pt = NSOA.record.oaProjecttask(booking.project_taskid);
 NSOA.form.error('', "Task on date " + df.userDateFormat(taskDate) + " exceeds booking end date "
 + df.userDateFormat(bookingDate) + " for for %project% '" + NSOA.record.oaProject(pt.projectid).name + "' %project_task% '" +
 pt.name + "'.");
 return;
 }
 }
 });
 });
 }
}

Automation

Optionally create a new Customer PO when editing a
project
This example allows a customer to streamline their business processes by quickly creating customer POs
as a part of saving a project.

■ Saves ~7 mouse clicks

User Scripting

Automation 174

■ Can be used on a per-project basis (not required)

■ Can be used multiple times if many POs are required on one project

A new custom Quick Customer PO section has been added to the project form. A user script is triggered
as the project saves to create the specified customer PO.

The Create Customer PO check box signals that a new customer PO record is to be created and the
customer PO fields cleared allowing the user to quickly create additional customer POs. When the project
is saved the specified Customer PO is then created.

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Project form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the After save event, and set
createCustomerPO as the Entrance Function.

User Scripting

https://app.openair.com/download/solutions/automate_create_po.xml

Automation 175

5. Set up the following custom fields for Project. You can set the Divider text for the first custom
field to Quick Customer PO to place the custom fields in their own section.

Add the following hints:
■ prj_custpo_num — Hint: Enter the customer's PO number.
■ prj_custpo_amt — Hint: Enter an amount if different from the project budget.
■ prj_custpo_date — Hint: Enter a date if different from the project start date.
■ prj_create_po — Hint: Check to create a new Customer PO after saving your project.

Program Listing

function createCustomerPO(type) {
 try {
 var FLD_CUSTPO_NUM = 'prj_custpo_num__c',
 FLD_CUSTPO_AMT = 'prj_custpo_amt__c',
 FLD_CUSTPO_DATE = 'prj_custpo_date__c',

User Scripting

Automation 176

 FLD_CREATE_PO = 'prj_create_po__c';

 // get updated project record fields
 var updPrj = NSOA.form.getNewRecord();

 // if the "Create PO" checkbox is checked and a PO number is entered, create a PO
 if (updPrj[FLD_CREATE_PO] == '1' && updPrj[FLD_CUSTPO_NUM]) {

 var recCustPO = new NSOA.record.oaCustomerpo();
 recCustPO.number = updPrj[FLD_CUSTPO_NUM];
 recCustPO.name = updPrj[FLD_CUSTPO_NUM] + ' ' + updPrj.name;

 // use the PO date if available, otherwise use project start date
 if (updPrj[FLD_CUSTPO_DATE] != '0000-00-00') {
 recCustPO.date = updPrj[FLD_CUSTPO_DATE];
 } else {
 recCustPO.date = updPrj.start_date;
 }

 // currency custom fields return ISO-#.##; remove the ISO code and dash
 var cleanAmt = updPrj[FLD_CUSTPO_AMT].replace(/-\w{3}/, '');

 // use the PO amt if available, otherwise use project budget
 if (cleanAmt && cleanAmt != '0.00') {
 recCustPO.total = cleanAmt;
 } else if (updPrj.budget && updPrj.budget > 0.00) {
 recCustPO.total = updPrj.budget;
 }

 recCustPO.currency = updPrj.currency;
 recCustPO.customerid = updPrj.customerid;
 recCustPO.active = 1;

 // disable the current user's filter set while script runs
 NSOA.wsapi.disableFilterSet(true);

 // add the new customer po to the project
 var custPOResults = NSOA.wsapi.add(
 [recCustPO]
);

 if (!custPOResults || !custPOResults[0]) {
 NSOA.meta.log('error', 'Unexpected error! Customer PO was not created.');
 } else if (custPOResults[0].errors) {
 custPOResults[0].errors.forEach(function(err) {
 NSOA.meta.log('error', 'Error: ' + err.code + ' - ' + err.comment);
 });
 } else {
 // new customer po to project link object
 var recCustPOtoProj = new NSOA.record.oaCustomerpo_to_project();
 recCustPOtoProj.customerpoid = custPOResults[0].id;
 recCustPOtoProj.customerid = updPrj.customerid;
 recCustPOtoProj.projectid = updPrj.id;
 recCustPOtoProj.active = '1';

 // disable the current user's filter set while script runs
 NSOA.wsapi.disableFilterSet(true);

 // add the new customer po to the project
 var custPOtoProjResults = NSOA.wsapi.add(
 [recCustPOtoProj]
);

 if (!custPOtoProjResults || !custPOtoProjResults[0]) {
 NSOA.meta.log('error',
 'Unexpected error! Customer PO was not linked to the project.');
 } else if (custPOtoProjResults[0].errors) {
 custPOtoProjResults[0].errors.forEach(function(err) {
 NSOA.meta.log('error', 'Error: ' + err.code + ' - ' + err.comment);
 });
 }

 }

User Scripting

Automation 177

 // create project object to hold update information and clear quick po
 var recProj = new NSOA.record.oaProject(updPrj.id);
 recProj[FLD_CUSTPO_NUM] = '';
 recProj[FLD_CREATE_PO] = '';
 recProj[FLD_CUSTPO_AMT] = '';
 recProj[FLD_CUSTPO_DATE] = '';

 // disable the current user's filter set while script runs
 NSOA.wsapi.disableFilterSet(true);

 // enable custom field editing
 var update_custom = {
 name: 'update_custom',
 value: '1'
 };

 // update the project to clear quick customer po create information
 var projResults = NSOA.wsapi.modify(
 [update_custom], [recProj]
);

 if (!projResults || !projResults[0]) {
 NSOA.meta.log('error', 'Unexpected error! Project was not updated.');
 } else if (projResults[0].errors) {
 projResults[0].errors.forEach(function(err) {
 NSOA.meta.log('error', 'Error: ' + err.code + ' - ' + err.comment);
 });
 }

 } else {
 NSOA.meta.log('debug', 'Customer po creation was skipped.');
 }

 } catch (e) {
 NSOA.meta.log('error', 'Uncaught error: ' + e);
 }
}

Create time entries from task assignments when the user
creates a new timesheet
This script creates time entries from task assignments when the user creates a new timesheet.

When the user creates a new timesheet, toggle checkbox to have it prefilled with data fetched from the
current task assignments.

■ Automate timesheet creation with relevant tasks an employee is working on.

■ Saves a lot of time digging through pick lists, finding correct tasks.

■ FUTURE: Could deploy project task afterSave script to auto-update existing open timesheets as
assignments change (practical for monthly timesheets).

User Scripting

Automation 178

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Timesheet [New] form script deployment.
2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.
3. Click on the script link to launch the Scripting Studio.
4. (1) Copy the Program Listing below into the editor, (2) set the After save event, and set

prepopulate_ts_from_assignments as the Entrance Function.

5. Set up a Checkbox custom field for Timesheet. The first in each pair is a Pick List with a List
source of User. The second in each pair is a Ratio. You can set the Divider text for the very first
custom field to Commission to place the custom fields in their own section.

User Scripting

https://app.openair.com/download/solutions/automate_timesheet_entry.xml

Automation 179

6. Use the Form schema to identify the correct param names for the custom fields and change the
array at the top of the script accordingly.

Tip: If the new custom field is not listed in the Form schema, navigate to Timesheets,
create a new Timesheet form without saving (this with will refresh the custom field list), and
then open the Scripting Studio again.

Program Listing

var CUST_FIELD = 'ts_prefill_from_task_assignments__c'; // Use Form schema to find param name
function prepopulate_ts_from_assignments(type) {

 var ts = NSOA.form.getValue(CUST_FIELD);

 // if the checkbox is not ticked, exit
 if (ts === false) {
 return;
 }

 // retrieve the current user
 var user = NSOA.wsapi.whoami();

 //look for current assignments for this user
 var defaultPerRow = find_assignments(user.id);

 // retrieve the new object
 var newr = NSOA.form.getNewRecord();
 var timesheet = new NSOA.record.oaTimesheet();

 timesheet.id = newr.id;
 timesheet.default_per_row = defaultPerRow;

 var result = NSOA.wsapi.modify([], [timesheet]);
}

//find the assignments for this user and return a string for timesheet.default_per_row
function find_assignments(userid) {

 // fetch a list of task assignments for the current user
 var taskAssign = new NSOA.record.oaProjecttaskassign();
 taskAssign.userid = userid;

 var readTasksAssign = {
 type: "Projecttaskassign",
 method: "equal to",

User Scripting

Automation 180

 fields: "projecttaskid",
 attributes: [{
 name: "limit",
 value: "0,1000"
 }],
 objects: [taskAssign]
 };

 var CSV = {
 pt_id: [],
 cp_id: []
 };
 var resultTaskAssign = NSOA.wsapi.read(readTasksAssign);

 // iterate through all the task assignments and filter only current ones
 // retrieve all tasks that belong to user, started in the past and percent_complete < 100
 if (resultTaskAssign[0].errors === null && resultTaskAssign[0].objects) {

 for (var i = 0; i < resultTaskAssign[0].objects.length; i++) {

 var projectTask = new NSOA.record.oaProjecttask();
 projectTask.id = resultTaskAssign[0].objects[i].projecttaskid;

 var readTask = {
 type: "Projecttask",
 method: "equal to",
 fields: "calculated_starts,starts,percent_complete,customerid,id,projectid",
 attributes: [{
 name: "limit",
 value: "0,1000"
 }],
 objects: [projectTask]
 };

 var resultTask = NSOA.wsapi.read(readTask);

 // do we have results?
 if (resultTask[0].errors === null && resultTask[0].objects) {
 for (var k = 0; k < resultTask[0].objects.length; k++) {

 var ptStartDate = resultTask[0].objects[k].starts.substring(0, 10);

 // optimization: skip blank dates
 if (ptStartDate === '0000-00-00') {
 ptStartDate = resultTask[0].objects[k].calculated_starts.substring(0, 10);
 if (ptStartDate === '0000-00-00') {
 continue;
 }
 }

 var currentDate = new Date();
 var starts = new Date(ptStartDate);

 // do we have a date?
 // NSOA.meta.alert('currentdate=' + currentDate + ' starts='+starts);

 if (starts <= currentDate &&
 parseInt(resultTask[0].objects[k].percent_complete, 10) < 100) {
 CSV.pt_id.push(resultTask[0].objects[k].id);
 CSV.cp_id.push(resultTask[0].objects[k].customerid + ":" +
 resultTask[0].objects[k].projectid);
 }
 }
 }
 }
 }

 var retval = "pt_id," + CSV.pt_id.join(",") + "\n";
 retval = retval + "cp_id," + CSV.cp_id.join(",");
 return retval;

}

User Scripting

Automation 181

Control budgeted hours for a project using the project
budget feature and a custom hours field
This script controls the budgeted hours for a project using the project budget feature and a custom
hours field.

Note: Requires "Project budgets" feature enabled.

■ Only requires you to manage your budgeted hours in one place

■ Allows budgeted hours to be date stamped for better change order management

■ Form permissions can be used to make the project budget hours field read only, which matches the
budget money field behavior

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Budget form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the After save event, and set
updateProjectBudgetHours as the Entrance Function.

5. Set up an Hours custom field for Project and an Hours custom field for Budget.

User Scripting

https://app.openair.com/download/solutions/automate_budgeted_hours.xml

Automation 182

Program Listing

function updateProjectBudgetHours(type) {
 try {
 // DEBUG: Uncomment next line to enable XML logging
 // var wsLog = NSOA.wsapi.enableLog(true);
 // list all fields used in script
 var FLD_PRJ_ID = 'id',
 FLD_PRJ_BUD_HRS = 'prj_budget_time__c',
 FLD_BUD_PID = 'projectid';

 // store newly saved budget record
 var updBudget = NSOA.form.getNewRecord();

 // create new budget object to store information
 var budRec = new NSOA.record.oaBudget();
 budRec.projectid = updBudget.projectid;
 var budRequest = {
 type: "Budget",
 method: "equal to",
 fields: "id,budget_hours__c", // budget_hours__c is a custom hours field
 attributes: [{
 name: "limit",
 value: "100"
 }],
 objects: [budRec]
 };

 // disable the current user's filter set while script runs
 NSOA.wsapi.disableFilterSet(true);

 // search for all budget transactions with current projectid
 var budResults = NSOA.wsapi.read(budRequest);
 if (!budResults || !budResults[0]) {
 NSOA.meta.log('error', 'Unexpected error! Could not return project budgets.');
 return;
 } else if (budResults[0].errors !== null && budResults[0].errors.length > 0) {
 prjResults[0].errors.forEach(function(err) {
 var fullError = err.code + ' - ' + err.comment + ' ' + err.text;
 NSOA.meta.log('error', 'Error: ' + fullError);
 });
 return;
 }
 var b,
 totalBudHrs = 0,
 budObj = budResults[0].objects,
 budObjLen = budObj.length;
 for (b = 0; b < budObjLen; b++) {
 var budHrs = parseInt(budObj[b].budget_hours__c, 10);
 totalBudHrs += budHrs; // add all hours together
 }
 // create new project object to store information
 var prjRec = new NSOA.record.oaProject();
 prjRec[FLD_PRJ_ID] = updBudget[FLD_BUD_PID];
 prjRec[FLD_PRJ_BUD_HRS] = totalBudHrs;

 // disable the current user's filter set while script runs
 NSOA.wsapi.disableFilterSet(true);

 // update the project budget
 var prjResults = NSOA.wsapi.modify(

User Scripting

Automation 183

 [{
 name: "update_custom",
 value: "1"
 }], [prjRec]
);
 if (!prjResults || !prjResults[0]) {
 NSOA.meta.log('error', 'Unexpected error! Project was not updated.');
 } else if (prjResults[0].errors !== null && prjResults[0].errors.length > 0) {
 prjResults[0].errors.forEach(function(err) {
 var fullError = err.code + ' - ' + err.comment + ' ' + err.text;
 NSOA.meta.log('error', 'Error: ' + fullError);
 });
 return;
 }

 } catch (e) {
 NSOA.meta.log('error', 'Try/catch error: ' + e);
 }
}

Workflow

Prevent a booking from being created if the selected
resource has approved time off during the booking period
This script prevents a booking from being created if the selected resource has approved time off during
the booking period.

■ Improves accuracy of bookings
■ Supports override flag to force booking

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Booking form script deployment.
2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.
3. Click on the script link to launch the Scripting Studio.

User Scripting

https://app.openair.com/download/solutions/workflow_available_booking.xml

Workflow 184

4. (1) Copy the Program Listing below into the editor, (2) set the Before save event, and set
validate_vacation as the Entrance Function.

5. Set up a Checkbox and a Text Area custom field for Booking.

6. Use the Form schema to identify the correct param names for the custom fields and change the
array at the top of the script accordingly.

User Scripting

Workflow 185

Tip: If the new custom fields are not listed in the Form schema, navigate to Resources,
open a booking form (this with will refresh the custom field list), and then open the
Scripting Studio again.

Program Listing

// timetype_id depends on account settings
var CUST_FIELD = 'bk_override_vacation__c';
var CUST_FIELD_NOTES = 'bk_override_vacation_notes__c';

function validate_vacation() {
 // To support exception situations where booking should be allowed over scheduled timeoff,
 // new checkbox custom field with associated notes field has been added to Booking form.
 // When that field is checked, we want the notes field to be required, so we validate the
 // custom fields settings at the start.
 var override = NSOA.form.getValue(CUST_FIELD);
 var req_notes = NSOA.form.getValue(CUST_FIELD_NOTES);

 // If we are overriding the booking vacation restrictions
 if (override) {
 // And the notes field is not set
 if (!req_notes) { // This is a basic has-a-value check, typically check should be
 // more extensive, i.e. not blank spaces, of certain length, etc.
 // Set custom field error message to indicate required, and prevent form saving
 NSOA.form.error(CUST_FIELD,
 'When overriding vacation restrictions, notes are required');
 }
 return; // Stop, as no further checks are required
 }

 // getValue returns JS Date objects for Date type fields
 var start = NSOA.form.getValue('startdate'); // While adding/changing a script,
 var end = NSOA.form.getValue('enddate'); // the Form Schema section provides a list
 // of available form fields and the expected
 // return values of those fields

 // Create the oaSchedulerequest object for the WSAPI read search
 // Information on available records can be found in the user scripting guide
 // Note the form field is user_id but the SOAP API field is userid
 var approvedSchedReq = new NSOA.record.oaSchedulerequest();
 approvedSchedReq.userid = NSOA.form.getValue('user_id');
 approvedSchedReq.approval_status = 'A'; // (A)pproved, (O)pen, (S)ubmitted, (R)ejected
 approvedSchedReq.timetypeid = '5'; // Personal time is timetypeid 5

 // Pull the start and end dates for Schedulerequests that match our criteria
 var aPTO = NSOA.wsapi.read({
 type: 'Schedulerequest', // The SOAP API complex type
 method: 'equal to',
 fields: 'startdate,enddate', // start & end fields for Schedulerequest complex type
 attributes: [{
 name: 'limit', // ReadRequest objects must have a limit specified
 value: '100' // '100' returns up to 100, '50,100' returns 50 - 100
 }],
 objects: [approvedSchedReq] // The previously created search object
 });

 // NSOA.wsapi.read() returns an array of objects with error and objects properties
 for (x = 0; x < aPTO.length; x++) {
 // If there were errors, notify the user and stop
 if (aPTO[x].errors) {
 var errorMsg = '';
 for (i = 0; i < aPTO[x].errors.length; i++) {
 errorMsg += 'SOAP error [' + aPTO[x].errors[i].code + ']:';
 errorMsg += aPTO[x].errors[i].text + ' - ';
 errorMsg += aPTO[x].errors[i].comment + "\n";
 }
 NSOA.form.error('', errorMsg); // Set the main form error message with the details
 return;

User Scripting

Workflow 186

 }

 // If there were approved personal Schedulerequest objects found
 if (aPTO[x].objects) {
 NSOA.meta.alert(aPTO[x].objects.length);
 // Loop through and validate the time off doesn't overlap booking request period
 for (i = 0; i < aPTO[x].objects.length; i++) {
 var thisStart = convertToDate(aPTO[x].objects[i].startdate);
 var thisEnd = convertToDate(aPTO[x].objects[i].enddate);

 // If the PTO overlaps the start of the period
 if ((thisStart <= start && thisEnd <= end && thisEnd >= start) ||
 (thisStart <= start && thisEnd >= end) || // Or overlaps whole period
 (thisStart >= start && thisEnd <= end) || // Or is wrapped by the period
 (thisStart >= start && thisStart <= end && thisEnd >= end)) { // Or end
 var malDate;
 if (thisStart.getTime() == thisEnd.getTime()) { // If the is a single day
 malDate = thisStart.toDateString(); // Only display one date
 } else { // Else start/end range
 malDate = thisStart.toDateString() + ' - ' + thisEnd.toDateString();
 }

 // Set the form startdate error message accordingly, then stop.
 NSOA.form.error('startdate', 'The requested resource has approved personal time off' + ' during the selected
 booking period: ' + malDate);
 return;
 }
 }
 }
 }
}

// Helper function for converting date strings to JS Date objects
function convertToDate(vDate) {
 // Expected date format is a string: YYYY-MM-DD 0:0:0
 var aYMD = vDate.split(' ');
 aYMD = aYMD[0].split('-');
 return new Date(aYMD[0], aYMD[1] - 1, aYMD[2]);
}

Prevent closing a project that has open issues
This script prevents the closing of a project that has open issues.

■ Enforces workflow requirement that all open issues be addressed before a project can be closed

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create two parameters, see Creating Parameters.

User Scripting

https://app.openair.com/download/solutions/workflow_open_issues.xml

Workflow 187

The List source for the ProjectClosedStage Pick List parameter is “Project stage”.

The List source for the IssueOpenStage Pick List parameter is “Stage”.

2. Create a new Project form script deployment.

3. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

4. Click on the script link to launch the Scripting Studio.

5. (1) Copy the Program Listing below into the editor, (2) set the Before save event, and set
test_prevent_project_close_with_open_issue as the Entrance Function.

Program Listing

// project_stage_id and issue_stage_id depend on account settings
function test_prevent_project_close_with_open_issue() {

 // return if new stage is not closed
 if (NSOA.form.getValue('project_stage_id') !=
 NSOA.context.getParameter('ProjectClosedStage'))
 return;

 // Load issue data
 var issue = new NSOA.record.oaIssue();
 issue.project_id = NSOA.form.getValue('id');
 issue.issue_stage_id = NSOA.context.getParameter('IssueOpenStage');

 var readRequest = {
 type: "Issue",
 fields: "id, date",

User Scripting

Workflow 188

 method: "equal to",
 objects: [issue],
 attributes: [{
 name: "limit",
 value: "1"
 }]
 };

 var arrayOfreadResult = NSOA.wsapi.read(readRequest);

 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error analyzing project issues.");

 else if (arrayOfreadResult[0].errors === null && arrayOfreadResult[0].objects)
 arrayOfreadResult[0].objects.forEach(
 function(o) {
 NSOA.form.error('', "Can't close project with open issues.");
 }
);
}

Automatically create a new issue when project stage is "at
risk" and prevent project stage from changing until this
issue is resolved
This script automatically create a new issue when the project stage is saved as "at risk" and prevents the
project stage from changing until the issue is resolved.

■ Enforces documentation trail for critical project concerns

■ More complex variation of simple "project stage" validation example

Follow the steps below or download the solutions file, see Creating Solutions for details.

Note: You will still need to create the custom fields described in Setup 1 — Custom Field

This example consists of a custom field and two scripts:

■ Setup 1 — Custom Field is used by both the scripts.

■ Setup 2 — Project After Save creates an issue with a custom field enabled.

■ Setup 3 — Project Before Save prevents the project stage from changing until the issue is resolved.

Important: This example requires you to create a Project Stage. See the Administrator
Guide for more details on Project Stages.

Setup 1 — Custom Field

1. Set up a Checkbox and a Text Area custom field for Issue.

User Scripting

https://app.openair.com/download/solutions/workflow_at_risk_issue.xml
https://app.openair.com/download/AdministratorGuide.pdf
https://app.openair.com/download/AdministratorGuide.pdf

Workflow 189

Setup 2 — Project After Save

1. Create a new Project form script deployment.
2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.
3. Click on the script link to launch the Scripting Studio.
4. (1) Copy the Program Listing below into the editor, (2) set the After save event, and set

proj_at_risk_aftersave as the Entrance Function.

Program Listing for Setup 2

function proj_at_risk_aftersave() {
 var PROJECT_STAGE_AT_RISK = NSOA.context.getParameter('ProjectAtRiskStage');
 var ISSUE_STAGE_OPEN = NSOA.context.getParameter('IssueOpenStage');

 // return if new stage is changed and "at risk"
 var proj = NSOA.form.getNewRecord();
 var old_stage = NSOA.form.getOldRecord().project_stageid;
 var current_stage = proj.project_stageid;
 NSOA.meta.log("debug", "old=" + old_stage + ", new=" + current_stage);
 if (old_stage == current_stage || current_stage != PROJECT_STAGE_AT_RISK)
 return;

 // Check for an existing at-risk event
 var issue = new NSOA.record.oaIssue();
 issue.project_id = proj.id;
 issue.for_at_risk_project__c = '1';

 var readRequest = {
 type: "Issue",
 fields: "id, name, date",

User Scripting

Workflow 190

 method: "equal to",
 objects: [issue],
 attributes: [{
 name: "limit",
 value: "1"
 }]
 };

 var arrayOfreadResult = NSOA.wsapi.read(readRequest);
 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error analyzing project issues.");

 else if (arrayOfreadResult[0].errors === null &&
 (!arrayOfreadResult[0].objects || arrayOfreadResult[0].objects.length === 0)) {
 issue.owner_id = NSOA.wsapi.whoami().id;
 issue.description = "Projected reported at risk";
 issue.issue_status_id = 1; // Unassigned
 issue.issue_stage_id = ISSUE_STAGE_OPEN;
 issue.date = (new Date()).toISOString().slice(0, 10);
 NSOA.meta.log('debug', JSON.stringify(issue));
 NSOA.wsapi.add(issue);
 }
}

Setup 3 — Project Before Save

1. Create a new Project form script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the Before save event, and set
proj_at_risk_beforesave_validate as the Entrance Function.

User Scripting

Workflow 191

Program Listing for Setup 3

function proj_at_risk_beforesave_validate() {
 var PROJECT_STAGE_AT_RISK = NSOA.context.getParameter('ProjectAtRiskStage');
 var ISSUE_STAGE_OPEN = NSOA.context.getParameter('IssueOpenStage');

 // return if new stage is not changing from "at risk"
 var current_stage = NSOA.form.getOldRecord().project_stageid;
 var new_stage = NSOA.form.getValue('project_stage_id');
 if (!(current_stage == PROJECT_STAGE_AT_RISK && new_stage != PROJECT_STAGE_AT_RISK))
 return;

 // Load issue data
 var issue = new NSOA.record.oaIssue();
 issue.project_id = NSOA.form.getValue('id');
 issue.issue_stage_id = ISSUE_STAGE_OPEN;
 issue.for_at_risk_project__c = '1';

 var readRequest = {
 type: "Issue",
 fields: "id, name, date",
 method: "equal to",
 objects: [issue],
 attributes: [{
 name: "limit",
 value: "1"
 }]
 };

 var arrayOfreadResult = NSOA.wsapi.read(readRequest);

 if (!arrayOfreadResult || !arrayOfreadResult[0])
 NSOA.form.error('', "Internal error analyzing project issues.");

 else if (arrayOfreadResult[0].errors === null && arrayOfreadResult[0].objects)
 arrayOfreadResult[0].objects.forEach(
 function(o) {
 NSOA.form.error('', "Can't change project stage until " +
 "the following issue is resolved: " + o.name);
 }
);
}

Send an alert email when a scheduled script completes
This script informs a user when a scheduled script completes successfully.

Follow the steps below or download the solutions file, see Creating Solutions for details.

Setup

1. Create a new Scheduled script deployment.

2. Enter a Filename and click SAVE. The extension ‘.js’ is automatically appended if not supplied.

3. Click on the script link to launch the Scripting Studio.

4. (1) Copy the Program Listing below into the editor, (2) set the Schedule event, and set main as
the Entrance Function.

User Scripting

https://app.openair.com/download/solutions/workflow_email_alert.xml

Workflow 192

Program Listing

function main() {
 // TODO Add Your Code Here

 // TODO Handle Errors

 // Notify The Owner
 var me = NSOA.wsapi.whoami();
 var msg = {
 to: [me.id],
 subject: "Script completed",
 format: "HTML",
 body: "Your script completed
" +
 "<hr/><i>Automatically sent by the system</i>"
 };

 NSOA.meta.sendMail(msg);
}

Send a Slack notification when issues are created or
(re)assigned
This script sends a notification on a specified Slack channel whenever an issue is created or modified.

User Scripting

Workflow 193

The script also sends a direct message from the Slack app bot to notify employees whenever an issue has
been assigned to them.

User Scripting

Workflow 194

Two different methods are used to post the messages. An incoming webhook is used to post messages
on a specific Slack channel. Slack API methods conversations.open and chat.postMessage are used
to post direct messages to users from the app bot user. The script also uses the Slack API method
users.lookupByEmail to identify the Slack users direct messages should posted to.

Follow the steps below or download the solutions file, see Creating Solutions for details.

Note: You will need to create, configure and install a Slack app associated to your workspace.
See Setup 1 — Create, Configure and Install a Slack App.

Four setup steps are required for this example

■ Configure the Slack App used by the scripts to send notifications. See Setup 1 — Create, Configure and
Install a Slack App.

■ Define and set 3 parameters used by the library script. See Setup 2 — Script Parameters.

■ Create a library script to be used by the two form scripts. See Setup 3 — Slack Notification Library
Script.

■ Create scripts associated to the Issue and the Project Issue forms. See Setup 4 — Issue After Save /
Project Issue After Save

Setup 1 — Create, Configure and Install a Slack App

1. Open the Slack desktop application and sign in to your Slack workspace using an Administrator
account.

2. Click your workspace name in the top left.

3. Select Administration > Manage apps. This will open the app directory for your workspace on a
new tab in your default web browser.

4. Click Build on the top right. This will redirect you to the Slack API documentation web page.

User Scripting

https://app.openair.com/download/solutions/workflow_slack_notification_for_issues.xml

Workflow 195

5. Click Start Building. The Create a Slack App dialog appears.

6. Enter the name of your application and the workspace associated with the app.

7. Click Create App. You will be redirected to the Basic Information screen for your Slack app.

8. Click Incoming Webhooks under Add Features and Functionality. The Incoming Webhooks
screen will display.

9. Enable the Activate Incoming Webhooks toggle.

10. Navigate back to the Basic Information page.

11. Click Bots under Add Features and Functionality. The Bot User screen will display.

12. Click Add a Bot User and enter a Display name and a Default username for your bot. Optionally,
enable the Always Show My Bot as Online toggle.

User Scripting

Workflow 196

13. Click Add Bot User. A confirmation message displays.

14. Navigate back to the Basic Information page and click Permissions under Add Features and
Functionality. The OAuth & Permissions screen will display.

15. Scroll down to the Scopes section. The following permission scopes should already be listed:

■ Post to a specific channel in Slack (incoming-webhook)

■ Add a bot user with the username @yourbot_default_username (bot)

16. Use the Select permission scopes dropdown to add the following permission scopes:

■ Send messages as Yourbot_Display_Name (chat:write:bot)

■ Access your workspace’s profile information (users:read)

■ View email addresses of people on this workspace (users:read.email)

User Scripting

Workflow 197

17. Click Save Changes.

18. Scroll back to the top of the page and click Install App to Workspace under OAuth Tokens &
Redirect URLs. A new screen will display.

19. Review the permission scopes for the app you are about to install and select the channel messages
will be posted to using the Incoming Webhook.

User Scripting

Workflow 198

In this example, Slack users are identified using their email address. This requires adding the
permission scopes users:read and users:read.email. The users:read permission scope enables the
app to access profile information for all users on the Slack workspace. If this is not desirable, an
alternative method to identify users for sending direct messages would be to use a custom field in
OpenAir to store a Slack user ID in the User records.

20. Click Authorize. You will be redirected back to the OAuth & Permissions screen.

21. Take a note of the Bot User OAuth Access Token under OAuth Tokens & Redirect URLs.

User Scripting

Workflow 199

22. Click the Incoming Webhook link on the left and take a note of the Webhook URL. You will need
this when setting the script parameters in Setup 2 — Script Parameters.

Posting messages on a specified Slack channel as an app bot user can be done using a Webhook URL.
In order to post direct messages to Slack users as an app bot user, a Bot User OAuth Access Token is
required. You will need to set these as script parameters in Setup 2 — Script Parameters.

Setup 2 — Script Parameters

1. Sign in to OpenAir as an Administrator and go to the OpenAir Scripting Center.

2. Create and set the following Password parameters:

■ SlackBotOAuthAccessToken — Set the value for this parameter to the Bot User OAuth Access
Token you noted in Setup 1 — Create, Configure and Install a Slack App.

■ SlackWebhookUrlForIssuesNotifications — Set the value for this parameter to the Webhook
URL you noted in Setup 1 — Create, Configure and Install a Slack App.

For more information about creating parameters, see Creating Parameters.

3. Create and set the following Text parameter:

■ SlackUrl — Set the value for this parameter to your Slack workspace URL (e.g. https://
myslackworkspace.slack.com).

User Scripting

Workflow 200

The parameters created will be referenced in the library script created in Setup 3 — Slack Notification
Library Script.

Setup 3 — Slack Notification Library Script

1. Create a new Library script deployment with the filename SlackMessageReIssues.js
For more information about creating library scripts, see Creating Library Scripts.

2. Locate and open the library script you have just created.
3. Reference the three parameters created in Setup 2 — Script Parameters.
4. Copy the script below and paste it in the Scripting Studio editor.

/*

LIBRARY SCRIPT USED FOR ISSUE AND PROJECT ISSUE FORM SCRIPTS

SLACK MESSAGING REFERENCE
 > https://api.slack.com/messaging

SLACK MESSAGE ATTACHMENT REFERENCE
 > https://api.slack.com/docs/message-attachments

 */

/**
 * Post a message to slack after creating or modifying an issue.
 * @param {Str} type Standard entrance function type.
 */

function postIssuesOnSlack(type) {

 // Retrieve parameters required to post to the Slack workspace or channel

 var slackBotAuth = NSOA.context.getParameter('SlackBotOAuthAccessToken');
 var slackUrl = NSOA.context.getParameter('SlackUrl');
 var slackWebhook = NSOA.context.getParameter('SlackWebhookUrlForIssuesNotifications');

 // Only proceed if all the required parameters have been set

 if (!slackBotAuth || slackBotAuth.length === 0 || !slackUrl || slackUrl.length === 0 || !slackWebhook || slackWeb
hook.length === 0) { return; }

 // Only proceed if the issue record is new or has been modified
 var issue = NSOA.form.getNewRecord();
 var issueReAssigned = false;
 if (type !== 'new') {
 // Get issue record from database with the newly saved values and the previous values
 var issueOld = NSOA.form.getOldRecord();
 if (issue.updated === issueOld.updated) {return;}
 if (issue.user_id !== issueOld.user_id) issueReAssigned = true;
 }

 // Record the SOAP API requests and responses in the log
 NSOA.wsapi.enableLog(true);

 // Execute the script independently of user filter sets
 NSOA.wsapi.disableFilterSet(true);

 // Get user, project, issue severity and issue stage records associated with the issue

User Scripting

Workflow 201

 var user = NSOA.record.oaUser(issue.user_id);
 var project = NSOA.record.oaProject(issue.project_id);
 var issueseverity = NSOA.record.oaIssueSeverity(issue.issue_severity_id);
 var issuestage = NSOA.record.oaIssueStage(issue.issue_stage_id);

 // Construct Slack messages content and attachments

 var issName = issue.name;
 var issDescr = issue.description;
 var issSeverity = issueseverity.name;
 var issStage = issuestage.name;
 var issNotes = issue.issue_notes;
 var issAssignee = user.name;
 var prjName = project.name;
 var prjCustName = project.customer_name;
 var issUpdated = issue.updated;
 var issCreated = issue.created;

 var createdEpoch = convertTimestampToEpoch(issUpdated);

 var attachmenticon = 'https://www.pngrepo.com/download/30662/warning.png';
 var messagetext = 'Issue *' + issue.name + '* has been modified.';
 var attachmenttitle = 'Issue Updated';
 var attachmentcolor = 'warning';

 if (type === 'new') {
 attachmenttitle = 'New Issue';
 messagetext = 'An issue has been created on *' + prjCustName + ' : ' + prjName + '*.';
 attachmentcolor = 'danger';
 createdEpoch = convertTimestampToEpoch(issCreated);
 }

 if (issuestage.considered_closed) {
 messagetext = 'Issue *' + issue.name + '* is ' + issuestage.name + '.';
 attachmenttitle = 'Issue ' + issuestage.name;
 attachmentcolor = 'good';
 issNotes = issue.resolution_notes;
 attachmenticon = 'https://www.pngrepo.com/download/167754/checked.png';
 }

 var fields = [
 {
 title: 'Issue',
 value: issName + ': ' + issDescr,
 short: false
 },
 {
 title: 'Customer : Project',
 value: prjCustName + ' : ' + prjName,
 short: false
 },
 {
 title: 'Severity',
 value: issSeverity,
 short: true
 },
 {
 title: 'Stage',
 value: issStage,
 short: true
 },
 {
 title: 'Assigned to',
 value: issAssignee,
 short: false
 },
 {
 title: 'Notes',
 value: issNotes,
 short: false
 }
];

User Scripting

Workflow 202

 var issueattachment = {
 fallback: messagetext,
 color: attachmentcolor,
 author_name: attachmenttitle,
 author_icon: attachmenticon,
 fields: fields,
 footer: 'OpenAir User Scripting API',
 footer_icon: 'https://www.pngrepo.com/download/36709/programming-code-signs.png',
 ts: createdEpoch
 };

 // Post message onto slack channel using Webhook URL
 var response = postMessageToSlackChannel(slackWebhook, messagetext, [issueattachment]);

 // Post direct message to assignee if issue newly (re)assigned
 if (((type === 'new' && issue.user_id) || issueReAssigned)&& slackBotAuth) {

 var assignedmessagetext = 'Issue *' + issue.name + '* has been assigned to you.';

 var issueassignedattachment = {
 fallback: assignedmessagetext,
 color: 'danger',
 author_name: 'Issue Assigned',
 author_icon: 'https://www.pngrepo.com/download/30662/warning.png',
 fields: fields,
 footer: 'OpenAir User Scripting API',
 footer_icon: 'https://www.pngrepo.com/download/36709/programming-code-signs.png',
 ts: createdEpoch
 };

 response = postSlackDirectMessage (slackUrl, slackBotAuth, assignedmessagetext, user.addr_email, [issueassigne
dattachment]);
 }
}

exports.postIssuesOnSlack = postIssuesOnSlack;

/**
 * Post a message to a slack channel using a webhook URL.
 * @param {Str} url The webhook url to post a message on a specific channel (required).
 * @param {Str} text Text to display on message (required).
 * @param {Array} attachments Array of attachment objects - must be provided if text param empty (optional).
 * @return {Obj} An https.post response object.
 */
function postMessageToSlackChannel (url, text, attachments) {

 // Check that url parameter has a value, otherwise return
 url = url || '';
 if (!url || url.length === 0) { return null; }

 // Check there's something to post, otherwise return
 text = text || '';
 if (!text || text.length === 0 || !(attachments && Object.prototype.toString.call(attachments) === '[object
 Array]')) { return null; }

 var body = {};

 //If text param is provided and not empty
 if (text && text.length!==0) { body.text = text; }

 // If attachments param is provided, and it is of type Array (isArray method isn't supported...)
 if (attachments && Object.prototype.toString.call(attachments) === '[object Array]') { body.attachments = attach
ments; }

 var headers = {
 'Content-Type': 'application/json'
 };

 var response = NSOA.https.post({
 url: url,
 body: body,
 headers: headers
 });

User Scripting

Workflow 203

 return response;
}

/**
 * Post a Direct Message on Slack as bot using the Slack Web API.
 * @param {Str} url The url for the slack workspace (required).
 * @param {Str} auth Authorization token (required)
 * @param {Str} text Text to display on message (required).
 * @param {Str} recipient The email address of the recipient (required).
 * @param {Array} attachments Array of attachment objects - must be provided if text param empty (optional).
 * @return {Obj} An https.post response object.
 */

function postSlackDirectMessage (url, auth, text, recipient, attachments) {

 // Check there's a message to post, otherwise return
 text = text || '';
 if (!text || text.length === 0 || !(attachments && Object.prototype.toString.call(attachments) === '[object
 Array]')) { return null; }

 // Get recipient Slack User ID if found, otherwise return
 var recipientId = getSlackUserId (url, auth, recipient);

 if (!recipientId) { return null; }

 //Construct headers
 var headers = {
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + auth
 };

 // Open Conversation and get Slack Channel ID - return if Slack Channel not identified
 var request = {
 url : url + '/api/conversations.open',
 body: { users: recipientId },
 headers: headers
 };

 var response = NSOA.https.post(request);

 if (!response.body.channel.id) { return null; }

 var channelId = response.body.channel.id;

 //Construct body
 var body = {channel: channelId};

 //If text param is provided and not empty, append to body
 if (text && text.length!==0) { body.text = text; }

 // If attachments param is provided, and it is of type Array (isArray method isn't supported...), append to body
 if (attachments && Object.prototype.toString.call(attachments) === '[object Array]') { body.attachments = attach
ments; }

 request = {
 url: url + '/api/chat.postMessage',
 body: body,
 headers: headers
 };

 response = NSOA.https.post(request);

 return response;
}

/**
 * Lookup Slack user ID by email.
 * @param {Str} url The url for the slack workspace (required).
 * @param {Str} auth Authorization token (required)
 * @param {Str} email The email address of the user (required).
 * @return {Str} A Slack user ID.
 */

User Scripting

Workflow 204

function getSlackUserId (url, auth, email) {

 // Check that url parameter has a value, otherwise return
 url = url || '';
 if (!url || url.length === 0) { return null; }

 // Check that auth parameter has a value, otherwise return
 auth = auth || '';
 if (!auth || auth.length === 0) { return null; }

 // Check that email parameter has a value, otherwise return
 email = email || '';
 if (!email || email.length === 0) { return null; }

 // Get recipient Slack User ID if found, otherwise return

 var request = {
 url: url + '/api/users.lookupByEmail?token=' + auth + '&email=' + email,
 headers: {'Content-type': 'application/x-www-form-urlencoded'}
 };

 var response = NSOA.https.get(request);

 if (response.body.ok) {return response.body.user.id;}
 else return null;
}

/**
 * Converts an OpenAir datetime string into a javascript date object.
 * @private
 * @param {Str} dateStr Datetime string.
 * @return {Obj} Date object.
 */
function _convertStringToDateParts(dateStr) {
 var regEx = /^(\d{4})-(\d{2})-(\d{2}) (\d{1,2}):(\d{1,2}):(\d{1,2})$/;
 var match = regEx.exec(dateStr);

 var year = match[1];
 var month = match[2] - 1;
 var day = match[3];
 var hours = match[4];
 var minutes = match[5];
 var seconds = match[6];

 var d = new Date(year, month, day, hours, minutes, seconds);

 return d;
}

/**
 * Converts an OpenAir datetime string to epoch time.
 * @param {Str} dateStr An OpenAir datetime string.
 * @return {Int} An epoch date value.
 */
function convertTimestampToEpoch(dateStr) {
 var d = _convertStringToDateParts(dateStr);
 return d.getTime() / 1000;
}

/**
 * Converts Names from Surname, Fistname format to Firstname Surname.
 * @private
 * @param {Str} name Full name formatted Surname, Firstname.
 * @return {Str} Full name formatted Firstname Surname.
 */
function _surCommaFirstToFirstSpaceSur(name) {
 var regEx = /^([^,]+), (.+?)$/g;
 return name.replace(regEx, '$2 $1');
}

5. Click Save.

User Scripting

Workflow 205

The library script will be referenced by the two form scripts created in Setup 4 — Issue After Save / Project
Issue After Save.

Setup 4 — Issue After Save / Project Issue After Save

1. Create a new Issue form script deployment and give it a filename.

For more information about creating form scripts, see Creating Form Scripts.

2. Reference the library script SlackMessageReIssues.js created in Setup 3 — Slack Notification
Library Script.

3. Copy the script below and paste it in the Scripting Studio editor.

function afterSaveIssue(type) {
 var SlackMessageReIssues = require('SlackMessageReIssues');
 SlackMessageReIssues.postIssuesOnSlack(type);
}

4. Click Save & continue editing.

5. Set the event triggering the execution of the script to After Save.

6. Set the Entrance Function to afterSaveIssue.

7. Click Save.

8. Create a new project Issue form script deployment and give it a filename.

9. Repeat steps 2 — 7.

User Scripting

User Scripting Release History 206

User Scripting Release History
Here you can find all changes made to user scripting by release.

April 13, 2024
—

October 7, 2024
—

April 15, 2023
■ Updated Logs — Sort log messages by internal ID, and view system-generated log messages for script

changes.

■ Updated View history — View when each script revision was deployed and by whom in the script
deployment history.

October 8, 2022
■ Added Clear Log Entries for a Specific Script — Clear all log entries for a specific script from the

Scripting Center.

■ Updated NSOA.meta.sendMail(message) — Increase the maximum body length of email messages
that can be sent from your form or scheduled scripts.

April 9, 2022
■ Added OData Explorer — Browse OData resources and columns available in these resources when

creating your scripts in the scripting studio.

■ Updated NSOA.report.data(reportId,optionalParameters) — Use select and filter query options to
target exactly the information you need from published OpenAir reports.

■ Added NSOA.context.getLanguage() — Get the user’s display language preference from your form
scripts.

October 9, 2021
■ Added NSOA.NSConnector.integrateWorkflowGroup(name)

■ Updated NSOA.report.list() — Each item in the returned list has an additional property: PublishType —
The scope of use specified for the published report.

User Scripting

April 18, 2020 207

April 18, 2020
■ Added NSOA.listview.data(listviewId)

■ Added NSOA.listview.list()

■ Added Platform Solutions Catalog — Find real world use case scripting examples in the OpenAir Help
Center.

October 12, 2019
■ Added Real World Use Cases:

□ Send a Slack notification when issues are created or (re)assigned

■ Updated NSOA.form.setValue(field, value)— Now supports dropdown, dropdown and text, pick list and
radio group field types.

■ Added NSOA.https.delete(request)

■ Added NSOA.https.patch(request)

■ Added NSOA.https.put(request)

April 13, 2019
■ Added Outbound Calling.

■ Added NSOA.https.get(request).

■ Added NSOA.https.post(request).

■ Added Code Samples:

□ Outbound Calling — SOAP Call Using HTTPS POST

□ Outbound Calling — Post a Slack Message

□ Outbound Calling — HTTPS GET with Authorization

October 13, 2018
■ Added Business Intelligence Connector.

■ Added NSOA.report.data(reportId,optionalParameters).

■ Added NSOA.report.list().

October 14, 2017
■ Added author parameter for NSOA.meta.sendMail(message).

■ In addition to creating scripts, solutions can now create custom fields, script libraries, and script
parameters. Selection lists for these options have been added to the Solution form. See Creating
Solutions.

■ Scripts can now be deployed against Issue forms. The Project Issue Form and Issue Form are distinct
script deployments. See Creating Form Scripts.

User Scripting

April 15, 2017 208

April 15, 2017
■ SetValue on Submit. See NSOA.form.setValue(field, value).

■ Script Deployment Logs. See View Log.

■ Added Trace Level Logs.

October 15, 2016
■ Added approval functions. See Scripting Approvals.

April 16, 2016
■ Enhanced Scripting Studio. See Scripting Studio.

□ Editor dynamically resizes to maximize the use of the available area and scrolls independently of
the tool area.

□ Customize the Scripting Studio according to your personal preferences with new display options.

□ Search and replace code in scripts using simple or regexp search expressions.

□ Jump directly to a script line number to quickly resolve script errors.

□ Create scripts that are ready to run with a default entrance function and event preselected.

■ Custom Field Protection.

■ Platform Role Permissions.

■ Execute as User.

■ Parameter Values.

■ Unapprove Event.

■ Connector API.

■ Enhanced Platform Solutions. See Creating Solutions.

□ Create custom fields as part of applying a Platform Solution to an account.

□ See the referencing solutions when viewing the Form, Scheduled and Parameters screens.

□ Use the new solution form to create Platform Solutions which include multiple scripts.

□ Link Platform Solutions to supporting documentation.

□ Create scripts that are ready to run with a default entrance function and event preselected.

October 17, 2015
■ Platform Solutions.

■ Email Support.

■ Confirmation and Warning Messages.

User Scripting

	Table of Contents
	Introduction
	User Scripting Overview
	Getting Started
	Logs
	Reporting
	Platform Role Permissions
	Scripting and OpenAir Mobile
	Scripting and NetSuite Integration

	User Scripting
	Scripting Center
	Scripting Workflow
	Creating Form Scripts
	Testing Form Scripts
	Deploying Form Scripts
	Creating Scheduled Scripts
	Testing Scheduled Scripts
	Deploying Scheduled Scripts
	Scheduled Scripts and Scheduled Queue Status
	Creating Library Scripts
	Creating Parameters
	Creating Solutions
	Accessing Terminology

	Scripting Studio
	Scripting Studio Tools and Settings
	SOAP Explorer
	Functions Explorer
	OData Explorer
	Script Parameters
	Terminology
	Form Schema
	Testing and Debugging
	Editor
	Scripting Studio Options

	Entrance Function
	Events
	Scripting Governance
	SOAP API
	Making SOAP Calls
	Using SOAP Results
	Handling SOAP Errors

	Outbound Calling
	Request
	Response
	Limits
	Password Script Parameters

	Scripting Approvals
	Working with the Approvals System
	Using Approval Results
	Handling Approval Errors

	Custom Fields
	Creating Custom Fields
	Reading Custom Fields
	Updating Custom Fields

	NSOA Functions
	NSOA.context.getAllParameters()
	NSOA.context.getAllTerms()
	NSOA.context.getLanguage()
	NSOA.context.getParameter(name)
	NSOA.context.getTerm(termid)
	NSOA.context.isTestMode()
	NSOA.context.parseTerminology(message)
	NSOA.context.remainingTime()
	NSOA.context.remainingUnits()
	NSOA.form.confirmation(message)
	NSOA.form.error(field, message)
	NSOA.form.getAllValues()
	NSOA.form.getLabel(field)
	NSOA.form.getName(field)
	NSOA.form.getNewRecord()
	NSOA.form.getOldRecord()
	NSOA.form.getValue(field)
	NSOA.form.get_value(field)
	NSOA.form.setValue(field, value)
	NSOA.form.warning(message)
	NSOA.https.delete(request)
	NSOA.https.get(request)
	NSOA.https.patch(request)
	NSOA.https.post(request)
	NSOA.https.put(request)
	NSOA.listview.data(listviewId)
	NSOA.listview.list()
	NSOA.meta.alert(message)
	NSOA.meta.log(severity, message)
	NSOA.meta.sendMail(message)
	NSOA.NSConnector.integrateAllNow()
	NSOA.NSConnector.integrateRecord()
	NSOA.NSConnector.integrateWorkflowGroup(name)
	NSOA.record.<complex type>([id])
	NSOA.report.data(reportId,optionalParameters)
	NSOA.report.list()
	NSOA.wsapi.add(objects)
	NSOA.wsapi.approve(approveRequest)
	NSOA.wsapi.delete(objects)
	NSOA.wsapi.disableFilterSet([flag])
	NSOA.wsapi.enableLog([flag])
	NSOA.wsapi.modify(attributes, objects)
	NSOA.wsapi.read(readRequest)
	NSOA.wsapi.reject(rejectRequest)
	NSOA.wsapi.remainingTime()
	NSOA.wsapi.submit(submitRequest)
	NSOA.wsapi.unapprove(unapproveRequest)
	NSOA.wsapi.upsert(attributes,objects)
	NSOA.wsapi.whoami()

	Code Samples
	Comparing Date Fields
	Validating Numeric Fields
	Requiring Minimum Values
	Creating Error Log Entries
	Sending email
	SOAP API — Prevent closing a project with an open issue
	SOAP API — Append notes to a project
	SOAP API — Require task assignment
	Submitting a Timesheet for Approval
	Outbound Calling — SOAP Call Using HTTPS POST
	Outbound Calling — Post a Slack Message
	Outbound Calling — HTTPS GET with Authorization

	JavaScript
	JavaScript Overview
	Variables
	Variable Scope
	Dynamic Data Types

	Arrays
	Associative Array

	Objects
	Functions
	Loops
	for
	for in
	forEach
	do while
	while

	Conditional Statements
	if ... else
	switch

	Error Handling
	References
	JavaScript Objects
	Array
	Boolean
	Date
	Math
	Number
	String

	JavaScript Operators
	Reserved Words
	Escape Sequences

	Scripting Best Practices
	Real World Use Cases
	Validation
	Ensure value of multiple commissions fields equals 100%
	Require notes field to be populated on time entries when more than 8 hours in a day
	When submitting an expense report, validate each ticket has an attachment (e.g. scanned receipt)
	Ensure resource time entry matches booking planning and project worked hours

	Automation
	Optionally create a new Customer PO when editing a project
	Create time entries from task assignments when the user creates a new timesheet
	Control budgeted hours for a project using the project budget feature and a custom hours field

	Workflow
	Prevent a booking from being created if the selected resource has approved time off during the booking period
	Prevent closing a project that has open issues
	Automatically create a new issue when project stage is "at risk" and prevent project stage from changing until this issue is resolved
	Send an alert email when a scheduled script completes
	Send a Slack notification when issues are created or (re)assigned

	User Scripting Release History

